forked from pycaret/pycaret
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_time_series_blending.py
93 lines (71 loc) · 3.05 KB
/
test_time_series_blending.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""Module to test time_series `blend_model` functionality
"""
from random import uniform
import numpy as np # type: ignore
import pytest
from pycaret.internal.ensemble import _ENSEMBLE_METHODS
from pycaret.time_series import TSForecastingExperiment
##########################
#### Tests Start Here ####
##########################
@pytest.mark.filterwarnings(
"ignore::statsmodels.tools.sm_exceptions.ConvergenceWarning:statsmodels"
)
@pytest.mark.parametrize("method", _ENSEMBLE_METHODS)
def test_blend_model(load_setup, load_models, method):
from pycaret.internal.ensemble import _EnsembleForecasterWithVoting
ts_experiment = load_setup
ts_models = load_models
ts_weights = [uniform(0, 1) for _ in range(len(ts_models))]
blender = ts_experiment.blend_models(
ts_models, method=method, weights=ts_weights, verbose=False
)
assert isinstance(blender, _EnsembleForecasterWithVoting)
# Test input models are available
blender_forecasters = blender.forecasters_
blender_forecasters_class = [f.__class__ for f in blender_forecasters]
ts_models_class = [f.__class__ for f in ts_models]
assert blender_forecasters_class == ts_models_class
@pytest.mark.filterwarnings(
"ignore::statsmodels.tools.sm_exceptions.ConvergenceWarning:statsmodels"
)
def test_blend_model_predict(load_setup, load_models):
ts_experiment = load_setup
ts_models = load_models
ts_weights = [uniform(0, 1) for _ in range(len(ts_models))]
mean_blender = ts_experiment.blend_models(ts_models, method="mean")
median_blender = ts_experiment.blend_models(ts_models, method="median")
voting_blender = ts_experiment.blend_models(
ts_models, method="voting", weights=ts_weights
)
mean_blender_pred = ts_experiment.predict_model(mean_blender)
median_blender_pred = ts_experiment.predict_model(median_blender)
voting_blender_pred = ts_experiment.predict_model(voting_blender)
mean_median_equal = np.array_equal(mean_blender_pred, median_blender_pred)
mean_voting_equal = np.array_equal(mean_blender_pred, voting_blender_pred)
median_voting_equal = np.array_equal(median_blender_pred, voting_blender_pred)
assert mean_median_equal is False
assert mean_voting_equal is False
assert median_voting_equal is False
def test_blend_model_custom_folds(load_pos_and_neg_data):
"""test custom folds in blend_model"""
exp = TSForecastingExperiment()
setup_fold = 3
exp.setup(
data=load_pos_and_neg_data,
fold=setup_fold,
fh=12,
fold_strategy="sliding",
verbose=False,
)
#######################################
## Test Tune Model with custom folds ##
#######################################
model = exp.create_model("naive")
_ = exp.blend_models([model, model, model])
metrics1 = exp.pull()
custom_fold = 5
_ = exp.blend_models([model, model, model], fold=custom_fold)
metrics2 = exp.pull()
assert len(metrics1) == setup_fold + 2 # + 2 for Mean and SD
assert len(metrics2) == custom_fold + 2 # + 2 for Mean and SD