forked from objcode/v8
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmacro-assembler-mips.cc
5770 lines (4926 loc) · 180 KB
/
macro-assembler-mips.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits.h> // For LONG_MIN, LONG_MAX.
#include "src/v8.h"
#if V8_TARGET_ARCH_MIPS
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/cpu-profiler.h"
#include "src/debug.h"
#include "src/isolate-inl.h"
#include "src/runtime.h"
namespace v8 {
namespace internal {
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
: Assembler(arg_isolate, buffer, size),
generating_stub_(false),
has_frame_(false) {
if (isolate() != NULL) {
code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
isolate());
}
}
void MacroAssembler::Load(Register dst,
const MemOperand& src,
Representation r) {
ASSERT(!r.IsDouble());
if (r.IsInteger8()) {
lb(dst, src);
} else if (r.IsUInteger8()) {
lbu(dst, src);
} else if (r.IsInteger16()) {
lh(dst, src);
} else if (r.IsUInteger16()) {
lhu(dst, src);
} else {
lw(dst, src);
}
}
void MacroAssembler::Store(Register src,
const MemOperand& dst,
Representation r) {
ASSERT(!r.IsDouble());
if (r.IsInteger8() || r.IsUInteger8()) {
sb(src, dst);
} else if (r.IsInteger16() || r.IsUInteger16()) {
sh(src, dst);
} else {
if (r.IsHeapObject()) {
AssertNotSmi(src);
} else if (r.IsSmi()) {
AssertSmi(src);
}
sw(src, dst);
}
}
void MacroAssembler::LoadRoot(Register destination,
Heap::RootListIndex index) {
lw(destination, MemOperand(s6, index << kPointerSizeLog2));
}
void MacroAssembler::LoadRoot(Register destination,
Heap::RootListIndex index,
Condition cond,
Register src1, const Operand& src2) {
Branch(2, NegateCondition(cond), src1, src2);
lw(destination, MemOperand(s6, index << kPointerSizeLog2));
}
void MacroAssembler::StoreRoot(Register source,
Heap::RootListIndex index) {
sw(source, MemOperand(s6, index << kPointerSizeLog2));
}
void MacroAssembler::StoreRoot(Register source,
Heap::RootListIndex index,
Condition cond,
Register src1, const Operand& src2) {
Branch(2, NegateCondition(cond), src1, src2);
sw(source, MemOperand(s6, index << kPointerSizeLog2));
}
// Push and pop all registers that can hold pointers.
void MacroAssembler::PushSafepointRegisters() {
// Safepoints expect a block of kNumSafepointRegisters values on the
// stack, so adjust the stack for unsaved registers.
const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
ASSERT(num_unsaved >= 0);
if (num_unsaved > 0) {
Subu(sp, sp, Operand(num_unsaved * kPointerSize));
}
MultiPush(kSafepointSavedRegisters);
}
void MacroAssembler::PopSafepointRegisters() {
const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
MultiPop(kSafepointSavedRegisters);
if (num_unsaved > 0) {
Addu(sp, sp, Operand(num_unsaved * kPointerSize));
}
}
void MacroAssembler::PushSafepointRegistersAndDoubles() {
PushSafepointRegisters();
Subu(sp, sp, Operand(FPURegister::NumAllocatableRegisters() * kDoubleSize));
for (int i = 0; i < FPURegister::NumAllocatableRegisters(); i+=2) {
FPURegister reg = FPURegister::FromAllocationIndex(i);
sdc1(reg, MemOperand(sp, i * kDoubleSize));
}
}
void MacroAssembler::PopSafepointRegistersAndDoubles() {
for (int i = 0; i < FPURegister::NumAllocatableRegisters(); i+=2) {
FPURegister reg = FPURegister::FromAllocationIndex(i);
ldc1(reg, MemOperand(sp, i * kDoubleSize));
}
Addu(sp, sp, Operand(FPURegister::NumAllocatableRegisters() * kDoubleSize));
PopSafepointRegisters();
}
void MacroAssembler::StoreToSafepointRegistersAndDoublesSlot(Register src,
Register dst) {
sw(src, SafepointRegistersAndDoublesSlot(dst));
}
void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
sw(src, SafepointRegisterSlot(dst));
}
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
lw(dst, SafepointRegisterSlot(src));
}
int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
// The registers are pushed starting with the highest encoding,
// which means that lowest encodings are closest to the stack pointer.
return kSafepointRegisterStackIndexMap[reg_code];
}
MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
}
MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
UNIMPLEMENTED_MIPS();
// General purpose registers are pushed last on the stack.
int doubles_size = FPURegister::NumAllocatableRegisters() * kDoubleSize;
int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
return MemOperand(sp, doubles_size + register_offset);
}
void MacroAssembler::InNewSpace(Register object,
Register scratch,
Condition cc,
Label* branch) {
ASSERT(cc == eq || cc == ne);
And(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
Branch(branch, cc, scratch,
Operand(ExternalReference::new_space_start(isolate())));
}
void MacroAssembler::RecordWriteField(
Register object,
int offset,
Register value,
Register dst,
RAStatus ra_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
ASSERT(!AreAliased(value, dst, t8, object));
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so so offset must be a multiple of kPointerSize.
ASSERT(IsAligned(offset, kPointerSize));
Addu(dst, object, Operand(offset - kHeapObjectTag));
if (emit_debug_code()) {
Label ok;
And(t8, dst, Operand((1 << kPointerSizeLog2) - 1));
Branch(&ok, eq, t8, Operand(zero_reg));
stop("Unaligned cell in write barrier");
bind(&ok);
}
RecordWrite(object,
dst,
value,
ra_status,
save_fp,
remembered_set_action,
OMIT_SMI_CHECK,
pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
li(value, Operand(BitCast<int32_t>(kZapValue + 4)));
li(dst, Operand(BitCast<int32_t>(kZapValue + 8)));
}
}
// Will clobber 4 registers: object, map, dst, ip. The
// register 'object' contains a heap object pointer.
void MacroAssembler::RecordWriteForMap(Register object,
Register map,
Register dst,
RAStatus ra_status,
SaveFPRegsMode fp_mode) {
if (emit_debug_code()) {
ASSERT(!dst.is(at));
lw(dst, FieldMemOperand(map, HeapObject::kMapOffset));
Check(eq,
kWrongAddressOrValuePassedToRecordWrite,
dst,
Operand(isolate()->factory()->meta_map()));
}
if (!FLAG_incremental_marking) {
return;
}
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
// TODO(mstarzinger): Dynamic counter missing.
if (emit_debug_code()) {
lw(at, FieldMemOperand(object, HeapObject::kMapOffset));
Check(eq,
kWrongAddressOrValuePassedToRecordWrite,
map,
Operand(at));
}
Label done;
// A single check of the map's pages interesting flag suffices, since it is
// only set during incremental collection, and then it's also guaranteed that
// the from object's page's interesting flag is also set. This optimization
// relies on the fact that maps can never be in new space.
CheckPageFlag(map,
map, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
eq,
&done);
Addu(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag));
if (emit_debug_code()) {
Label ok;
And(at, dst, Operand((1 << kPointerSizeLog2) - 1));
Branch(&ok, eq, at, Operand(zero_reg));
stop("Unaligned cell in write barrier");
bind(&ok);
}
// Record the actual write.
if (ra_status == kRAHasNotBeenSaved) {
push(ra);
}
RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
fp_mode);
CallStub(&stub);
if (ra_status == kRAHasNotBeenSaved) {
pop(ra);
}
bind(&done);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
li(dst, Operand(BitCast<int32_t>(kZapValue + 12)));
li(map, Operand(BitCast<int32_t>(kZapValue + 16)));
}
}
// Will clobber 4 registers: object, address, scratch, ip. The
// register 'object' contains a heap object pointer. The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(
Register object,
Register address,
Register value,
RAStatus ra_status,
SaveFPRegsMode fp_mode,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
ASSERT(!AreAliased(object, address, value, t8));
ASSERT(!AreAliased(object, address, value, t9));
if (emit_debug_code()) {
lw(at, MemOperand(address));
Assert(
eq, kWrongAddressOrValuePassedToRecordWrite, at, Operand(value));
}
if (remembered_set_action == OMIT_REMEMBERED_SET &&
!FLAG_incremental_marking) {
return;
}
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
// TODO(mstarzinger): Dynamic counter missing.
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
if (smi_check == INLINE_SMI_CHECK) {
ASSERT_EQ(0, kSmiTag);
JumpIfSmi(value, &done);
}
if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
eq,
&done);
}
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask,
eq,
&done);
// Record the actual write.
if (ra_status == kRAHasNotBeenSaved) {
push(ra);
}
RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
fp_mode);
CallStub(&stub);
if (ra_status == kRAHasNotBeenSaved) {
pop(ra);
}
bind(&done);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
li(address, Operand(BitCast<int32_t>(kZapValue + 12)));
li(value, Operand(BitCast<int32_t>(kZapValue + 16)));
}
}
void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
Register address,
Register scratch,
SaveFPRegsMode fp_mode,
RememberedSetFinalAction and_then) {
Label done;
if (emit_debug_code()) {
Label ok;
JumpIfNotInNewSpace(object, scratch, &ok);
stop("Remembered set pointer is in new space");
bind(&ok);
}
// Load store buffer top.
ExternalReference store_buffer =
ExternalReference::store_buffer_top(isolate());
li(t8, Operand(store_buffer));
lw(scratch, MemOperand(t8));
// Store pointer to buffer and increment buffer top.
sw(address, MemOperand(scratch));
Addu(scratch, scratch, kPointerSize);
// Write back new top of buffer.
sw(scratch, MemOperand(t8));
// Call stub on end of buffer.
// Check for end of buffer.
And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit));
if (and_then == kFallThroughAtEnd) {
Branch(&done, eq, t8, Operand(zero_reg));
} else {
ASSERT(and_then == kReturnAtEnd);
Ret(eq, t8, Operand(zero_reg));
}
push(ra);
StoreBufferOverflowStub store_buffer_overflow =
StoreBufferOverflowStub(isolate(), fp_mode);
CallStub(&store_buffer_overflow);
pop(ra);
bind(&done);
if (and_then == kReturnAtEnd) {
Ret();
}
}
// -----------------------------------------------------------------------------
// Allocation support.
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss) {
Label same_contexts;
ASSERT(!holder_reg.is(scratch));
ASSERT(!holder_reg.is(at));
ASSERT(!scratch.is(at));
// Load current lexical context from the stack frame.
lw(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
// In debug mode, make sure the lexical context is set.
#ifdef DEBUG
Check(ne, kWeShouldNotHaveAnEmptyLexicalContext,
scratch, Operand(zero_reg));
#endif
// Load the native context of the current context.
int offset =
Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
lw(scratch, FieldMemOperand(scratch, offset));
lw(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
// Check the context is a native context.
if (emit_debug_code()) {
push(holder_reg); // Temporarily save holder on the stack.
// Read the first word and compare to the native_context_map.
lw(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
LoadRoot(at, Heap::kNativeContextMapRootIndex);
Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext,
holder_reg, Operand(at));
pop(holder_reg); // Restore holder.
}
// Check if both contexts are the same.
lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
Branch(&same_contexts, eq, scratch, Operand(at));
// Check the context is a native context.
if (emit_debug_code()) {
push(holder_reg); // Temporarily save holder on the stack.
mov(holder_reg, at); // Move at to its holding place.
LoadRoot(at, Heap::kNullValueRootIndex);
Check(ne, kJSGlobalProxyContextShouldNotBeNull,
holder_reg, Operand(at));
lw(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
LoadRoot(at, Heap::kNativeContextMapRootIndex);
Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext,
holder_reg, Operand(at));
// Restore at is not needed. at is reloaded below.
pop(holder_reg); // Restore holder.
// Restore at to holder's context.
lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
}
// Check that the security token in the calling global object is
// compatible with the security token in the receiving global
// object.
int token_offset = Context::kHeaderSize +
Context::SECURITY_TOKEN_INDEX * kPointerSize;
lw(scratch, FieldMemOperand(scratch, token_offset));
lw(at, FieldMemOperand(at, token_offset));
Branch(miss, ne, scratch, Operand(at));
bind(&same_contexts);
}
void MacroAssembler::GetNumberHash(Register reg0, Register scratch) {
// First of all we assign the hash seed to scratch.
LoadRoot(scratch, Heap::kHashSeedRootIndex);
SmiUntag(scratch);
// Xor original key with a seed.
xor_(reg0, reg0, scratch);
// Compute the hash code from the untagged key. This must be kept in sync
// with ComputeIntegerHash in utils.h.
//
// hash = ~hash + (hash << 15);
nor(scratch, reg0, zero_reg);
sll(at, reg0, 15);
addu(reg0, scratch, at);
// hash = hash ^ (hash >> 12);
srl(at, reg0, 12);
xor_(reg0, reg0, at);
// hash = hash + (hash << 2);
sll(at, reg0, 2);
addu(reg0, reg0, at);
// hash = hash ^ (hash >> 4);
srl(at, reg0, 4);
xor_(reg0, reg0, at);
// hash = hash * 2057;
sll(scratch, reg0, 11);
sll(at, reg0, 3);
addu(reg0, reg0, at);
addu(reg0, reg0, scratch);
// hash = hash ^ (hash >> 16);
srl(at, reg0, 16);
xor_(reg0, reg0, at);
}
void MacroAssembler::LoadFromNumberDictionary(Label* miss,
Register elements,
Register key,
Register result,
Register reg0,
Register reg1,
Register reg2) {
// Register use:
//
// elements - holds the slow-case elements of the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the same as 'key' or 'result'.
// Unchanged on bailout so 'key' or 'result' can be used
// in further computation.
//
// Scratch registers:
//
// reg0 - holds the untagged key on entry and holds the hash once computed.
//
// reg1 - Used to hold the capacity mask of the dictionary.
//
// reg2 - Used for the index into the dictionary.
// at - Temporary (avoid MacroAssembler instructions also using 'at').
Label done;
GetNumberHash(reg0, reg1);
// Compute the capacity mask.
lw(reg1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
sra(reg1, reg1, kSmiTagSize);
Subu(reg1, reg1, Operand(1));
// Generate an unrolled loop that performs a few probes before giving up.
for (int i = 0; i < kNumberDictionaryProbes; i++) {
// Use reg2 for index calculations and keep the hash intact in reg0.
mov(reg2, reg0);
// Compute the masked index: (hash + i + i * i) & mask.
if (i > 0) {
Addu(reg2, reg2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
}
and_(reg2, reg2, reg1);
// Scale the index by multiplying by the element size.
ASSERT(SeededNumberDictionary::kEntrySize == 3);
sll(at, reg2, 1); // 2x.
addu(reg2, reg2, at); // reg2 = reg2 * 3.
// Check if the key is identical to the name.
sll(at, reg2, kPointerSizeLog2);
addu(reg2, elements, at);
lw(at, FieldMemOperand(reg2, SeededNumberDictionary::kElementsStartOffset));
if (i != kNumberDictionaryProbes - 1) {
Branch(&done, eq, key, Operand(at));
} else {
Branch(miss, ne, key, Operand(at));
}
}
bind(&done);
// Check that the value is a normal property.
// reg2: elements + (index * kPointerSize).
const int kDetailsOffset =
SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
lw(reg1, FieldMemOperand(reg2, kDetailsOffset));
And(at, reg1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
Branch(miss, ne, at, Operand(zero_reg));
// Get the value at the masked, scaled index and return.
const int kValueOffset =
SeededNumberDictionary::kElementsStartOffset + kPointerSize;
lw(result, FieldMemOperand(reg2, kValueOffset));
}
// ---------------------------------------------------------------------------
// Instruction macros.
void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
addu(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
addiu(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
addu(rd, rs, at);
}
}
}
void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
subu(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
addiu(rd, rs, -rt.imm32_); // No subiu instr, use addiu(x, y, -imm).
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
subu(rd, rs, at);
}
}
}
void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant == kLoongson) {
mult(rs, rt.rm());
mflo(rd);
} else {
mul(rd, rs, rt.rm());
}
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
if (kArchVariant == kLoongson) {
mult(rs, at);
mflo(rd);
} else {
mul(rd, rs, at);
}
}
}
void MacroAssembler::Mult(Register rs, const Operand& rt) {
if (rt.is_reg()) {
mult(rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
mult(rs, at);
}
}
void MacroAssembler::Multu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
multu(rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
multu(rs, at);
}
}
void MacroAssembler::Div(Register rs, const Operand& rt) {
if (rt.is_reg()) {
div(rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
div(rs, at);
}
}
void MacroAssembler::Divu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
divu(rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
divu(rs, at);
}
}
void MacroAssembler::And(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
and_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
andi(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
and_(rd, rs, at);
}
}
}
void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
or_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
ori(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
or_(rd, rs, at);
}
}
}
void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
xor_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
xori(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
xor_(rd, rs, at);
}
}
}
void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
nor(rd, rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
nor(rd, rs, at);
}
}
void MacroAssembler::Neg(Register rs, const Operand& rt) {
ASSERT(rt.is_reg());
ASSERT(!at.is(rs));
ASSERT(!at.is(rt.rm()));
li(at, -1);
xor_(rs, rt.rm(), at);
}
void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
slt(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
slti(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
slt(rd, rs, at);
}
}
}
void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
sltu(rd, rs, rt.rm());
} else {
if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
sltiu(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
sltu(rd, rs, at);
}
}
}
void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) {
if (kArchVariant == kMips32r2) {
if (rt.is_reg()) {
rotrv(rd, rs, rt.rm());
} else {
rotr(rd, rs, rt.imm32_);
}
} else {
if (rt.is_reg()) {
subu(at, zero_reg, rt.rm());
sllv(at, rs, at);
srlv(rd, rs, rt.rm());
or_(rd, rd, at);
} else {
if (rt.imm32_ == 0) {
srl(rd, rs, 0);
} else {
srl(at, rs, rt.imm32_);
sll(rd, rs, (0x20 - rt.imm32_) & 0x1f);
or_(rd, rd, at);
}
}
}
}
void MacroAssembler::Pref(int32_t hint, const MemOperand& rs) {
if (kArchVariant == kLoongson) {
lw(zero_reg, rs);
} else {
pref(hint, rs);
}
}
// ------------Pseudo-instructions-------------
void MacroAssembler::Ulw(Register rd, const MemOperand& rs) {
lwr(rd, rs);
lwl(rd, MemOperand(rs.rm(), rs.offset() + 3));
}
void MacroAssembler::Usw(Register rd, const MemOperand& rs) {
swr(rd, rs);
swl(rd, MemOperand(rs.rm(), rs.offset() + 3));
}
void MacroAssembler::li(Register dst, Handle<Object> value, LiFlags mode) {
AllowDeferredHandleDereference smi_check;
if (value->IsSmi()) {
li(dst, Operand(value), mode);
} else {
ASSERT(value->IsHeapObject());
if (isolate()->heap()->InNewSpace(*value)) {
Handle<Cell> cell = isolate()->factory()->NewCell(value);
li(dst, Operand(cell));
lw(dst, FieldMemOperand(dst, Cell::kValueOffset));
} else {
li(dst, Operand(value));
}
}
}
void MacroAssembler::li(Register rd, Operand j, LiFlags mode) {
ASSERT(!j.is_reg());
BlockTrampolinePoolScope block_trampoline_pool(this);
if (!MustUseReg(j.rmode_) && mode == OPTIMIZE_SIZE) {
// Normal load of an immediate value which does not need Relocation Info.
if (is_int16(j.imm32_)) {
addiu(rd, zero_reg, j.imm32_);
} else if (!(j.imm32_ & kHiMask)) {
ori(rd, zero_reg, j.imm32_);
} else if (!(j.imm32_ & kImm16Mask)) {
lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask);
} else {
lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask);
ori(rd, rd, (j.imm32_ & kImm16Mask));
}
} else {
if (MustUseReg(j.rmode_)) {
RecordRelocInfo(j.rmode_, j.imm32_);
}
// We always need the same number of instructions as we may need to patch
// this code to load another value which may need 2 instructions to load.
lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask);
ori(rd, rd, (j.imm32_ & kImm16Mask));
}
}
void MacroAssembler::MultiPush(RegList regs) {
int16_t num_to_push = NumberOfBitsSet(regs);
int16_t stack_offset = num_to_push * kPointerSize;
Subu(sp, sp, Operand(stack_offset));
for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
if ((regs & (1 << i)) != 0) {
stack_offset -= kPointerSize;
sw(ToRegister(i), MemOperand(sp, stack_offset));
}
}
}
void MacroAssembler::MultiPushReversed(RegList regs) {
int16_t num_to_push = NumberOfBitsSet(regs);
int16_t stack_offset = num_to_push * kPointerSize;
Subu(sp, sp, Operand(stack_offset));
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
stack_offset -= kPointerSize;
sw(ToRegister(i), MemOperand(sp, stack_offset));
}
}
}
void MacroAssembler::MultiPop(RegList regs) {
int16_t stack_offset = 0;
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
lw(ToRegister(i), MemOperand(sp, stack_offset));
stack_offset += kPointerSize;
}
}
addiu(sp, sp, stack_offset);
}
void MacroAssembler::MultiPopReversed(RegList regs) {
int16_t stack_offset = 0;
for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
if ((regs & (1 << i)) != 0) {
lw(ToRegister(i), MemOperand(sp, stack_offset));
stack_offset += kPointerSize;
}
}
addiu(sp, sp, stack_offset);
}
void MacroAssembler::MultiPushFPU(RegList regs) {
int16_t num_to_push = NumberOfBitsSet(regs);
int16_t stack_offset = num_to_push * kDoubleSize;
Subu(sp, sp, Operand(stack_offset));
for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
if ((regs & (1 << i)) != 0) {
stack_offset -= kDoubleSize;
sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
}
}
}
void MacroAssembler::MultiPushReversedFPU(RegList regs) {
int16_t num_to_push = NumberOfBitsSet(regs);
int16_t stack_offset = num_to_push * kDoubleSize;
Subu(sp, sp, Operand(stack_offset));