Skip to content

trancongman276/text-autoencoders

Repository files navigation

text-autoencoders

This repo contains the code and data of the following paper:
Latent Space Secrets of Denoising Text-Autoencoders
Tianxiao Shen, Jonas Mueller, Regina Barzilay, and Tommi Jaakkola

We support plain autoencoder (AE), variational autoencoder (VAE), adversarial autoencoder (AAE), AAE with perturbed z, and AAE with perturbed x (ours, default).

Once the model is trained, it can be used to generate sentences, map sentences to a continuous space, perform sentence analogy and interpolation.

Dependencies

The code has been tested in Python 3.7, PyTorch 1.1

Download data

Download the processed Yelp and Yahoo datasets by running:

bash download_data.sh

Training

The basic training command is:

python train.py --train data/yelp/train.txt --valid data/yelp/valid.txt --save-dir checkpoints/yelp/daae

To train various models, use the following options:

  • AE: --model ae --save-dir checkpoints/yelp/ae
  • VAE: --model vae --lambda_kl 0.1 --save-dir checkpoints/yelp/vae_kl0.1
  • AAE: --model aae --noise 0,0,0,0 --save-dir checkpoints/yelp/aae
  • AAE with perturbed z: --model aae --noise 0,0,0,0 --lambda_p 0.01 --save-dir checkpoints/yelp/aae_p0.01
  • AAE with perturbed x: --model aae --save-dir checkpoints/yelp/daae, and use --noise P,P,P,K to specify word drop probability, word blank probability, word substitute probability, max word shuffle distance, respectively

Run python train.py -h to see all training options.

Testing

After training, the model can be used for different tasks.

To reconstruct input data, run:

python test.py --reconstruct --data data/yelp/test.txt --output test.rec --checkpoint checkpoints/yelp/daae/

To generate sentences from the model, run:

python test.py --sample --n 10000 --output sample --checkpoint checkpoints/yelp/daae/

To perform sentence manipulation via vector arithmetic, run:

python test.py --arithmetic --data data/yelp/tense/valid.past,data/yelp/tense/valid.present,data/yelp/tense/test.past --output test.past2present --checkpoint checkpoints/yelp/daae/
python test.py --arithmetic --k 2 --data data/yelp/sentiment/100.neg,data/yelp/sentiment/100.pos,data/yelp/sentiment/1000.neg --output 1000.neg2pos --checkpoint checkpoints/yelp/daae/

where the difference between the average latent representation of the first two data files will be applied to the third file (separated by commas), and k denotes the scaling factor.

To perform sentence interpolation between two data files (separated by a comma), run:

python test.py --interpolate --data data/yelp/interpolate/example.long,data/yelp/interpolate/example.short --output example.int --checkpoint checkpoints/yelp/daae/

The output file will be stored in the checkpoint directory.

TODO

Current models are implemented using LSTM. We may switch to the Transformer architecture.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.6%
  • Other 0.4%