forked from Tazinho/Advanced-R-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path20_Evaluation.Rmd
executable file
·491 lines (361 loc) · 16 KB
/
20_Evaluation.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
```{r, include = FALSE}
source("common.R")
```
# Evaluation
<!-- 20 -->
## Prerequisites {-}
<!-- 20.0 -->
On our journey through R's metaprogramming, we continue to use the functions from the `{rlang}` package.
```{r setup}
library(rlang)
```
\stepcounter{section}
## Evaluation basics
<!-- 20.2 -->
__[Q1]{.Q}__: Carefully read the documentation for `source()`. What environment does it use by default? What if you supply `local = TRUE`? How do you provide a custom environment?
__[A]{.solved}__: By default, `source()` uses the global environment (`local = FALSE`). A specific evaluation environment may be chosen, by passing it explicitly to the `local` argument. To use current environment (i.e. the calling environment of `source()`) set `local = TRUE`.
```{r}
# Create a temporary, sourcable R script that prints x
tmp_file <- tempfile()
writeLines("print(x)", tmp_file)
# Set `x` globally
x <- "global environment"
env2 <- env(x = "specified environment")
locate_evaluation <- function(file, local) {
x <- "local environment"
source(file, local = local)
}
# Where will source() evaluate the code?
locate_evaluation(tmp_file, local = FALSE) # default
locate_evaluation(tmp_file, local = env2)
locate_evaluation(tmp_file, local = TRUE)
```
__[Q2]{.Q}__: Predict the results of the following lines of code:
```{r, eval = FALSE}
eval(expr(eval(expr(eval(expr(2 + 2)))))) # (1)
eval(eval(expr(eval(expr(eval(expr(2 + 2))))))) # (2)
expr(eval(expr(eval(expr(eval(expr(2 + 2))))))) # (3)
```
__[A]{.solved}__: Let's look at a quote from the [first edition of Advanced R](http://adv-r.had.co.nz/Computing-on-the-language.html#subset):
> "`expr()` and `eval()` are opposites. [...] each `eval()` peels off one layer of `expr()`'s".
In general, `eval(expr(x))` evaluates to `x`. Therefore, (1) evaluates to $2 + 2 = 4$. Adding another `eval()` doesn't have impact here. So, also (2) evaluates to `4`. However, when wrapping (1) into `expr()` the whole expression will be quoted.
```{r}
eval(expr(eval(expr(eval(expr(2 + 2)))))) # (1)
eval(eval(expr(eval(expr(eval(expr(2 + 2))))))) # (2)
expr(eval(expr(eval(expr(eval(expr(2 + 2))))))) # (3)
```
__[Q3]{.Q}__: Fill in the function bodies below to re-implement `get()` using `sym()` and `eval()`, and `assign()` using `sym()`, `expr()`, and `eval()`. Don't worry about the multiple ways of choosing an environment that `get()` and `assign()` support; assume that the user supplies it explicitly.
```{r}
# name is a string
get2 <- function(name, env) {}
assign2 <- function(name, value, env) {}
```
__[A]{.solved}__: We reimplement these two functions using tidy evaluation. We turn the string `name` into a symbol, then evaluate it:
```{r}
get2 <- function(name, env = caller_env()) {
name_sym <- sym(name)
eval(name_sym, env)
}
x <- 1
get2("x")
```
To build the correct expression for the value assignment, we unquote using `!!`.
```{r}
assign2 <- function(name, value, env = caller_env()) {
name_sym <- sym(name)
assign_expr <- expr(!!name_sym <- !!value)
eval(assign_expr, env)
}
assign2("x", 4)
x
```
__[Q4]{.Q}__: Modify `source2()` so it returns the result of _every_ expression, not just the last one. Can you eliminate the for loop?
__[A]{.solved}__: The code for `source2()` was given in Advanced R as:
```{r}
source2 <- function(path, env = caller_env()) {
file <- paste(readLines(path, warn = FALSE), collapse = "\n")
exprs <- parse_exprs(file)
res <- NULL
for (i in seq_along(exprs)) {
res <- eval(exprs[[i]], env)
}
invisible(res)
}
```
In order to highlight the modifications in our new `source2()` function, we've preserved the differing code from the former `source2()` in a comment.
```{r}
source2 <- function(path, env = caller_env()) {
file <- paste(readLines(path, warn = FALSE), collapse = "\n")
exprs <- parse_exprs(file)
# res <- NULL
# for (i in seq_along(exprs)) {
# res[[i]] <- eval(exprs[[i]], env)
# }
res <- purrr::map(exprs, eval, env)
invisible(res)
}
```
Let's create a file and test `source2()`. Keep in mind that `<-` returns invisibly.
```{r}
tmp_file <- tempfile()
writeLines(
"x <- 1
x
y <- 2
y # some comment",
tmp_file
)
(source2(tmp_file))
```
__[Q5]{.Q}__: We can make `base::local()` slightly easier to understand by spreading it over multiple lines:
```{r}
local3 <- function(expr, envir = new.env()) {
call <- substitute(eval(quote(expr), envir))
eval(call, envir = parent.frame())
}
```
Explain how `local()` works in words. (Hint: you might want to `print(call)` to help understand what `substitute()` is doing, and read the documentation to remind yourself what environment `new.env()` will inherit from.)
__[A]{.solved}__: Let's follow the advice and add `print(call)` inside of `local3()`:
```{r}
local3 <- function(expr, envir = new.env()) {
call <- substitute(eval(quote(expr), envir))
print(call)
eval(call, envir = parent.frame())
}
```
The first line generates a call to `eval()`, because `substitute()` operates in the current evaluation argument. However, this doesn't matter here, as both, `expr` and `envir` are promises and therefore "the expression slots of the promises replace the symbols", from `?substitute`.
```{r}
local3({
x <- 10
x * 2
})
```
Next, `call` will be evaluated in the caller environment (aka the parent frame). Given that `call` contains another call `eval()` why does this matter? The answer is subtle: this outer environment determines where the bindings for `eval`, `quote`, and `new.env` are found.
<!-- this needs a better description based on the AST, @Malte -->
```{r}
eval(quote({
x <- 10
x * 2
}), new.env())
exists("x")
```
## Quosures
<!-- 20.3 -->
__[Q1]{.Q}__: Predict what evaluating each of the following quosures will return if evaluated.
```{r}
q1 <- new_quosure(expr(x), env(x = 1))
q1
q2 <- new_quosure(expr(x + !!q1), env(x = 10))
q2
q3 <- new_quosure(expr(x + !!q2), env(x = 100))
q3
```
__[A]{.solved}__: Each quosure is evaluated in its own environment, so `x` is bound to a different value for each time. This leads us to:
```{r}
eval_tidy(q1)
eval_tidy(q2)
eval_tidy(q3)
```
__[Q2]{.Q}__: Write an `enenv()` function that captures the environment associated with an argument. (Hint: this should only require two function calls.)
__[A]{.solved}__: A quosure captures both the expression and the environment. From a quosure, we can access the environment with the help of `get_env()`.
```{r}
enenv <- function(x) {
get_env(enquo(x))
}
# Test
enenv(x)
# Test if it also works within functions
capture_env <- function(x) {
enenv(x)
}
capture_env(x)
```
## Data masks
<!-- 20.4 -->
__[Q1]{.Q}__: Why did I use a for loop in `transform2()` instead of `map()`? Consider `transform2(df, x = x * 2, x = x * 2)`.
__[A]{.solved}__: `transform2()` was defined in Advanced R as:
```{r}
transform2 <- function(.data, ...) {
dots <- enquos(...)
for (i in seq_along(dots)) {
name <- names(dots)[[i]]
dot <- dots[[i]]
.data[[name]] <- eval_tidy(dot, .data)
}
.data
}
```
A for loop applies the processing steps regarding `.data` iteratively. This includes updating `.data` and reusing the same variable names. This makes it possible to apply transformations sequentially, so that subsequent transformations can refer to columns that were just created.
__[Q2]{.Q}__: Here's an alternative implementation of `subset2()`:
```{r, results = FALSE}
subset3 <- function(data, rows) {
rows <- enquo(rows)
eval_tidy(expr(data[!!rows, , drop = FALSE]), data = data)
}
df <- data.frame(x = 1:3)
subset3(df, x == 1)
```
Compare and contrast `subset3()` to `subset2()`. What are its advantages and disadvantages?
__[A]{.solved}__: Let's take a closer look at `subset2()` first:
```{r}
subset2 <- function(data, rows) {
rows <- enquo(rows)
rows_val <- eval_tidy(rows, data)
stopifnot(is.logical(rows_val))
data[rows_val, , drop = FALSE]
}
```
`subset2()` provides an additional logical check, which is missing from `subset3()`. Here, `rows` is evaluated in the context of `data`, which results in a logical vector. Afterwards only `[` needs to be used for subsetting.
```{r}
# subset2() evaluation
(rows_val <- eval_tidy(quo(x == 1), df))
df[rows_val, , drop = FALSE]
```
With `subset3()` both of these steps occur in a single line (which is probably closer to what one would produce by hand). This means that the subsetting is also evaluated in the context of the data mask.
```{r}
# subset3() evaluation
eval_tidy(expr(df[x == 1, , drop = FALSE]), df)
```
This is shorter (but probably also less readable) because the evaluation and the subsetting take place in the same expression. However, it may introduce unwanted errors, if the data mask contains an element named "data", as the objects from the data mask take precedence over arguments of the function.
```{r, error = TRUE}
df <- data.frame(x = 1:3, data = 1)
subset2(df, x == 1)
subset3(df, x == 1)
```
__[Q3]{.Q}__: The following function implements the basics of `dplyr::arrange()`. Annotate each line with a comment explaining what it does. Can you explain why `!!.na.last` is strictly correct, but omitting the `!!` is unlikely to cause problems?
```{r}
arrange2 <- function(.df, ..., .na.last = TRUE) {
args <- enquos(...)
order_call <- expr(order(!!!args, na.last = !!.na.last))
ord <- eval_tidy(order_call, .df)
stopifnot(length(ord) == nrow(.df))
.df[ord, , drop = FALSE]
}
```
__[A]{.solved}__: `arrange2()` basically reorders a data frame by one or more of its variables. As `arrange2()` allows to provide the variables as expressions (via `...`), these need to be quoted first. Afterwards they are used to build up an `order()` call, which is then evaluated in the context of the data frame. Finally, the data frame is reordered via integer subsetting. Let's take a closer look at the source code:
```{r}
arrange2 <- function(.df, ..., .na.last = TRUE) {
# Capture and quote arguments, which determine the order
args <- enquos(...)
# `!!!`: unquote-splice arguments into order()
# `!!.na.last`: pass option for treatment of NAs to order()
# return expression-object
order_call <- expr(order(!!!args, na.last = !!.na.last))
# Evaluate order_call within .df
ord <- eval_tidy(order_call, .df)
# Ensure that no rows are dropped
stopifnot(length(ord) == nrow(.df))
# Reorder rows via integer subsetting
.df[ord, , drop = FALSE]
}
```
By using `!!.na.last` the `.na.last` argument is unquoted when the `order()` call is built. This way, the `na.last` argument is already correctly specified (typically `TRUE`, `FALSE` or `NA`).
Without the unquoting, the expression would read `na.last = .na.last` and the value for `.na.last` would still need to be looked up and found. Because these computations take place inside of the function's execution environment (which contains `.na.last`), this is unlikely to cause problems.
```{r}
# The effect of unquoting .na.last
.na.last <- FALSE
expr(order(..., na.last = !!.na.last))
expr(order(..., na.last = .na.last))
```
## Using tidy evaluation
<!-- 20.5 -->
__[Q1]{.Q}__: I've included an alternative implementation of `threshold_var()` below. What makes it different to the approach I used above? What makes it harder?
```{r}
threshold_var2 <- function(df, var, val) {
var <- ensym(var)
subset2(df, `$`(.data, !!var) >= !!val)
}
```
__[A]{.solved}__: Let's compare this approach to the original implementation:
```{r}
threshold_var <- function(df, var, val) {
var <- as_string(ensym(var))
subset2(df, .data[[var]] >= !!val)
}
```
We can see that `threshold_var2()` no longer coerces the symbol to a string. Therefore `$` instead of `[[` can be used for subsetting. Initially we suspected partial matching would be introduced by `$`, but `.data` deliberately avoids this problem.
The prefix call to `$()` is less common than infix-subsetting using `[[`, but ultimately both functions behave the same.
```{r}
df <- data.frame(x = 1:10)
threshold_var(df, x, 8)
threshold_var2(df, x, 8)
```
## Base evaluation
<!-- 20.6 -->
__[Q1]{.Q}__: Why does this function fail?
```{r, error = TRUE}
lm3a <- function(formula, data) {
formula <- enexpr(formula)
lm_call <- expr(lm(!!formula, data = data))
eval(lm_call, caller_env())
}
lm3a(mpg ~ disp, mtcars)$call
```
__[A]{.solved}__: In this function, `lm_call` is evaluated in the caller environment, which happens to be the global environment. In this environment, the name `data` is bound to `utils::data`. To fix the error, we can either set the evaluation environment to the function's execution environment or unquote the `data` argument when building the call to `lm()`.
```{r, error = TRUE}
# Change evaluation environment
lm3b <- function(formula, data) {
formula <- enexpr(formula)
lm_call <- expr(lm(!!formula, data = data))
eval(lm_call, current_env())
}
lm3b(mpg ~ disp, mtcars)$call
lm3b(mpg ~ disp, data)$call #reproduces original error
```
When we want to unquote an argument within a function, we first need to capture the user-input (by `enexpr()`).
```{r, error = TRUE}
# Unquoting data-argument
lm3c <- function(formula, data) {
formula <- enexpr(formula)
data_quo <- enexpr(data)
lm_call <- expr(lm(!!formula, data = !!data_quo))
eval(lm_call, caller_env())
}
lm3c(mpg ~ disp, mtcars)$call
```
__[Q2]{.Q}__: When model building, typically the response and data are relatively constant while you rapidly experiment with different predictors. Write a small wrapper that allows you to reduce duplication in the code below.
```{r, eval = FALSE}
lm(mpg ~ disp, data = mtcars)
lm(mpg ~ I(1 / disp), data = mtcars)
lm(mpg ~ disp * cyl, data = mtcars)
```
__[A]{.solved}__: In our wrapper `lm_wrap()`, we provide `mpg` and `mtcars` as default response and data. This seems to give us a good mix of usability and flexibility.
```{r}
lm_wrap <- function(pred, resp = mpg, data = mtcars,
env = caller_env()) {
pred <- enexpr(pred)
resp <- enexpr(resp)
data <- enexpr(data)
formula <- expr(!!resp ~ !!pred)
lm_call <- expr(lm(!!formula, data = !!data))
eval(lm_call, envir = env)
}
# Test if the output looks ok
lm_wrap(I(1 / disp) + disp * cyl)
# Test if the result is identical to calling lm() directly
identical(
lm_wrap(I(1 / disp) + disp * cyl),
lm(mpg ~ I(1 / disp) + disp * cyl, data = mtcars)
)
```
__[Q3]{.Q}__: Another way to write `resample_lm()` would be to include the resample expression `(data[sample(nrow(data), replace = TRUE), , drop = FALSE])` in the data argument. Implement that approach. What are the advantages? What are the disadvantages?
__[A]{.solved}__: Different versions of `resample_lm()` were given in Advanced R. However, none of them implemented the resampling within the function argument.
Different versions of `resample_lm()` (`resample_lm0()`, `resample_lm1()`, `resample_lm2()`) were specified in Advanced R. However, in none of these versions was the resampling step implemented in any of the arguments.
This approach takes advantage of R's lazy evaluation of function arguments, by moving the resampling step into the argument definition. The user passes the data to the function, but only a permutation of this data (`resample_data`) will be used.
```{r}
resample_lm <- function(
formula, data,
resample_data = data[sample(nrow(data), replace = TRUE), ,
drop = FALSE],
env = current_env()) {
formula <- enexpr(formula)
lm_call <- expr(lm(!!formula, data = resample_data))
expr_print(lm_call)
eval(lm_call, env)
}
df <- data.frame(x = 1:10, y = 5 + 3 * (1:10) + round(rnorm(10), 2))
(lm_1 <- resample_lm(y ~ x, data = df))
lm_1$call
```
With this approach the evaluation needs to take place within the function's environment, because the resampled dataset (defined as a default argument) will only be available in the function environment.
Overall, putting an essential part of the pre-processing outside of the functions body is not common practice in R. Compared to the unquoting-implementation (`resample_lm1()` in Advanced R), this approach captures the model-call in a more meaningful way. This approach will also lead to a new resample every time you `update()` the model.