forked from NVIDIA/Fuser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytest_fusion_definitions.py
88 lines (70 loc) · 3.29 KB
/
pytest_fusion_definitions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
# All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# Owner(s): ["module: nvfuser"]
import torch
from pytest_core import OpInfo
from pytest_utils import ArgumentType, is_tensor
from nvfuser import FusionDefinition
from nvfuser.pytorch_utils import (
python_scalar_to_nvfuser_dtype,
torch_dtype_to_nvfuser_dtype,
)
def parse_inputs_fusion_definition(fd: FusionDefinition, opinfo: OpInfo, *args):
if len(args) == 0:
return []
nvf_args = []
if opinfo.symbolic_parameter_list is None:
opinfo.symbolic_parameter_list = [ArgumentType.Symbolic] * len(args)
num_symbolic_parameters = len(opinfo.symbolic_parameter_list)
assert num_symbolic_parameters == len(
args
), f"{num_symbolic_parameters} vs {len(args)}"
for arg_type, a in zip(opinfo.symbolic_parameter_list, args):
if arg_type == ArgumentType.Symbolic:
if isinstance(a, torch.Tensor):
nvf_args.append(fd.from_pytorch(a))
elif isinstance(a, list) and all(map(is_tensor, a)):
nvf_args.append([fd.from_pytorch(inner_a) for inner_a in a])
elif isinstance(a, list) or isinstance(a, tuple):
nvf_args.append(fd.define_vector(a))
else:
# For symbolic scalars, we do not define with constant value.
# Otherwise, it becomes a constant and is not a fusion input.
nvf_args.append(fd.define_scalar(python_scalar_to_nvfuser_dtype(a)))
elif arg_type == ArgumentType.ConstantScalar:
assert not isinstance(a, torch.Tensor)
nvf_args.append(fd.define_scalar(a))
elif isinstance(a, torch.dtype):
nvf_args.append(torch_dtype_to_nvfuser_dtype(a))
else:
assert not isinstance(a, torch.Tensor)
assert arg_type == ArgumentType.Constant
nvf_args.append(a)
return nvf_args
# This function will purposely not generate a functional FusionDefintion as
# it lacks defining an output. It is only meant to test the error checking
# of an operation.
def api_test_fd_fn(fd: FusionDefinition, opinfo: OpInfo, *args, **kwargs):
nvf_inputs = parse_inputs_fusion_definition(fd, opinfo, *args)
this_inputs = opinfo.op(fd)(**kwargs)
def default_fd_fn(fd: FusionDefinition, opinfo: OpInfo, *args, **kwargs):
nvf_inputs = parse_inputs_fusion_definition(fd, opinfo, *args)
result = opinfo.op(fd)(*nvf_inputs, **kwargs)
if isinstance(result, tuple):
for a in result:
fd.add_output(a)
else:
fd.add_output(result)
def tensor_input_fd_fn(fd: FusionDefinition, opinfo: OpInfo, *args, **kwargs):
nvf_inputs = parse_inputs_fusion_definition(fd, opinfo, *args)
this_inputs = opinfo.op(fd)(**kwargs)
t1 = fd.ops.add(nvf_inputs[0], this_inputs)
fd.add_output(t1)
def tensor_api_test_fd_fn(fd: FusionDefinition, opinfo: OpInfo, *args, **kwargs):
nvf_inputs = parse_inputs_fusion_definition(fd, opinfo, *args)
out = opinfo.op(fd)(nvf_inputs[0], **kwargs)
def vector_api_test_fd_fn(fd: FusionDefinition, opinfo: OpInfo, *args, **kwargs):
nvf_inputs = parse_inputs_fusion_definition(fd, opinfo, *args)
v0 = nvf_inputs[0].shape()
out = opinfo.op(fd)(v0, **kwargs)