-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlaunch.py
151 lines (114 loc) · 3.52 KB
/
launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#!/usr/bin/env python
import argparse
import json
import os
import subprocess
from time import time
from typing import Any, Dict, List, Tuple, Union
import psutil
def check_call(*args: Any, **kwargs: Any) -> None:
print("running: ", *args)
subprocess.check_call(*args, **kwargs)
Args = Dict[str, Union[List[Union[str, int, float]], str, int]]
gpu_hist = "xgboost-gpu-hist"
cpu_hist = "xgboost-cpu-hist"
mortgage: Args = {
"data": "mortgage",
"algo": [gpu_hist, cpu_hist],
"colsample_bynode": [0.6, 1.0],
"cpus": psutil.cpu_count(logical=True),
"rounds": [200, 500],
"backend": "cudf",
"max-depth": [8, 16],
"policy": ["depthwise", "lossguide"],
"workers": 1,
"eval": [0, 1],
}
mortgage_2y = mortgage.copy()
mortgage_2y["data"] = "mortgage:2"
mortgage_2y["backend"] = "dask_cudf"
mortgage_2y["workers"] = 2
higgs = mortgage.copy()
higgs["data"] = "higgs"
covtype = mortgage.copy()
covtype["data"] = "covtype"
year = mortgage.copy()
year["data"] = "year"
airline = mortgage.copy()
airline["backend"] = "cudf"
airline["data"] = "airline"
epsilon = mortgage.copy()
epsilon["data"] = "epsilon"
generated = mortgage.copy()
generated["data"] = "generated"
generated["n_samples"] = int(2e7)
generated["n_features"] = [256, 64]
generated["sparsity"] = [0.8, 0.4, 0.1]
generated["task"] = "reg"
history = []
def rec(v_i: int, variables: list, spec: list, resume: bool) -> None:
if v_i == len(variables):
cmd = ["dxgb-bench"] + spec
if resume and cmd in history:
print(f"Skipping: {cmd}")
return
check_call(cmd)
history.append(tuple(cmd))
with open("./history.json", "w") as fd:
json.dump(history, fd)
return
n_varients = len(variables[v_i])
for i in range(n_varients):
k, v = variables[v_i][i]
appended = spec.copy()
appended.append(k + "=" + str(v))
rec(v_i + 1, variables, appended, resume)
def launch(dirpath: str, parameters: Args) -> None:
variables = []
constants: List[Tuple[str, Union[str, int]]] = [("--local-directory", dirpath)]
for key, value in parameters.items():
prefix = "--" + key
if isinstance(value, list):
var = []
for v in value:
item = (prefix, v)
var.append(item)
variables.append(var)
else:
item = (prefix, value)
constants.append(item)
spec = [k + "=" + str(v) for k, v in constants]
resume = args.resume == 1
rec(0, variables, spec, resume)
def main(local_directory: str) -> None:
global history
if os.path.exists("./history.json"):
with open("./history.json", "r") as fd:
history = json.load(fd)
local_directory = os.path.expanduser(local_directory)
launch(local_directory, generated)
launch(local_directory, mortgage)
launch(local_directory, mortgage_2y)
launch(local_directory, higgs)
launch(local_directory, covtype)
launch(local_directory, year)
launch(local_directory, airline)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--local-directory",
type=str,
help="Local directory for storing the dataset.",
required=True,
)
parser.add_argument(
"--resume",
type=int,
help="Resume from last session.",
default=0,
)
args = parser.parse_args()
start = time()
main(args.local_directory)
end = time()
print("Total duration:", end - start)