Skip to content
forked from inisis/DFace

修改的DFace代码,可以完整训练得到MTCNN模型

Notifications You must be signed in to change notification settings

tuvia0213/DFace

Repository files navigation


DFace (Deeplearning Face) • License

Linux CPU Linux GPU Mac OS CPU Windows CPU
Build Status Build Status Build Status Build Status

MTCNN Structure  

Pnet Rnet Onet

Installation

DFace has two major module, detection and recognition.In these two, We provide all tutorials about how to train a model and running. First setting a pytorch and cv2. We suggest Anaconda to make a virtual and independent python envirment.If you want to train on GPU,please install Nvidia cuda and cudnn.

Requirements

  • pytorch==0.4.0
  • torchvision
  • cv2
git clone https://github.com/inisis/DFace.git

Add DFace to your local python path

export PYTHONPATH=$PYTHONPATH:{your local DFace root path}

Face Detetion and Recognition

If you are interested in how to train a mtcnn model, you can follow next step.

Train mtcnn Model

MTCNN have three networks called PNet, RNet and ONet.So we should train it on three stage, and each stage depend on previous network which will generate train data to feed current train net, also propel the minimum loss between two networks. Please download the train face datasets before your training. We use WIDER FACE and CelebA .WIDER FACE is used for training face classification and face bounding box, also CelebA is used for face landmarks. The original wider face annotation file is matlab format, you must transform it to text. I have put the transformed annotation text file into anno_store/wider_origin_anno.txt. This file is related to the following parameter called --anno_file.

  • Generate PNet Train data and annotation file
python dface/prepare_data/gen_Pnet_train_data.py --prefix_path WIDER_train/images/ --dface_traindata_store data/ --anno_file anno_store/wider_origin_anno.txt
  • Assemble annotation file and shuffle it
python dface/prepare_data/assemble_pnet_imglist.py
  • Train PNet model
python dface/train_net/train_p_net.py
  • Generate RNet Train data and annotation file
python dface/prepare_data/gen_Rnet_train_data.py --prefix_path WIDER_train/images/ --dface_traindata_store data/ --anno_file  anno_store/wider_origin_anno.txt --pmodel_file model_store/pnet_epoch_10.pt
  • Assemble annotation file and shuffle it
python dface/prepare_data/assemble_rnet_imglist.py
  • Train RNet model
python dface/train_net/train_r_net.py
  • Generate ONet Train data and annotation file
python dface/prepare_data/gen_Onet_train_data.py --prefix_path WIDER_train/images/ --dface_traindata_store data/ --anno_file anno_store/wider_origin_anno.txt --pmodel_file model_store/pnet_epoch_10.pt --rmodel_file model_store/rnet_epoch_10.pt
  • Generate ONet Train landmarks data
    To generate testImageList.txt, you need to cpoy merge_file.py to celeba/CelebA/Anno/ floder
python dface/prepare_data/gen_landmark_48.py --dface_traindata_store data/ --anno_file celeba/CelebA/Anno/testImageList.txt --prefix_path celeba/CelebA/Img/img_celeba.7z/img_celeba
  • Assemble annotation file and shuffle it
python dface/prepare_data/assemble_onet_imglist.py
  • Train ONet model
python dface/train_net/train_o_net.py

Test face detection

If you don't want to train,i have put onet_epoch10.pt,pnet_epoch10.pt,rnet_epoch10.pt in model_store folder.You just try test_image.py

python test_image.py

License

Apache License 2.0

About

修改的DFace代码,可以完整训练得到MTCNN模型

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%