-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
430 lines (374 loc) · 20.7 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import argparse
from hyper_parameters import *
os.environ["OMP_NUM_THREADS"] = '1'
os.environ["CUDA_VISIBLE_DEVICES"] = which_gpu
from utils.handy_functions import *
from models.unet import create_unet_model
from models.r2unet import *
from models.sa_unet import SA_Unet
from models.attunetplus import AttU_Net_Plus
from models.kiunet import kiunet
from models.laddernet import LadderNetv6
from models.dunet import DUNetV1V2
from models.fanet import FANet
import PIL
from torchvision import transforms
from utils.eval_utils import ConfusionMatrix
from utils.timer import Timer
from steps.make_data import MakeData as originmk
from steps.make_data_inference import MakeData as infmk
from utils.color_palette import generate_color_img
my_params = HyperParameters()
Model_path = 'save_weights/RITE/model-saunet-coe-0.0-time-20230623-111432-best_dice-0.7636436820030212-RITE.pth'
Manual = 'manual1'
def parse_arguments():
my_params = HyperParameters()
parser = argparse.ArgumentParser(description="inference your model.")
# batchsize是做数据的时候判断使用多少CPU核心时用的,其实在做验证集时并不需要
parser.add_argument("-b", "--batch-size", default=my_params.Batch_Size, type=int)
parser.add_argument("--which-gpu", default=my_params.Which_GPU, type=str, help="which gpu to use")
parser.add_argument("--data-path", default=my_params.Data_Root, help="data root")
parser.add_argument("--device", default=str(my_params.Device), type=str, help="training device")
parser.add_argument('--model_path', default=Model_path, help="the best trained model root")
parser.add_argument("--back-bone", default='unet', type=str,
choices=["fcn", "unet", "r2unet", "attunet", "r2attunet", 'saunet', 'attunetplus'])
parser.add_argument("--num-classes", default=my_params.Class_Num, type=int)
parser.add_argument("--dataset", default='DRIVE', type=str, choices=["DRIVE", 'Chase_db1', 'RITE', 'ISIC2018'],
help="which dataset to use")
parser.add_argument("--is_val", default='val', type=str, choices=['train', 'val'],
help='Use test or train to inference. Only for DRIVE dataset.')
parser.add_argument("--manual", default=Manual, type=str, choices=['manual1', 'manual2'],
help='Use which manual to inference.')
parser.add_argument('--show', default='no', type=str, choices=['yes', 'no'],
help='Whether to output the result one by one.')
parser.add_argument('--visualization', '-v', default='all', type=str, choices=['all', 'none'],
help='Whether to generate all the result of the network.')
parser.add_argument('--is_mine', default='origin', type=str, choices=['origin', 'mine'],
help='If the model has levelset function.')
return parser.parse_args()
def create_model(args):
if args.back_bone == 'unet':
return create_unet_model(num_classes=args.num_classes + 1)
elif args.back_bone == 'r2unet':
return R2U_Net(output_ch=args.num_classes + 1)
elif args.back_bone == 'attunet':
return AttU_Net(output_ch=args.num_classes + 1)
elif args.back_bone == 'r2attunet':
return R2AttU_Net(output_ch=args.num_classes + 1)
elif args.back_bone == 'saunet':
return SA_Unet(base_size=16)
elif args.back_bone == 'saunet64':
return SA_Unet(base_size=64)
elif args.back_bone == 'attunetplus':
return AttU_Net_Plus(output_ch=args.num_classes + 1, sa=True)
elif args.back_bone == 'fanet':
return FANet()
elif args.back_bone == 'kiunet':
return kiunet()
elif args.back_bone == 'laddernet':
return LadderNetv6(num_classes=args.num_classes + 1)
def compute_index(args):
matrix = ConfusionMatrix(num_classes=args.num_classes + 1)
device = args.device
model = create_model(args=args).to(device)
pth = torch.load(args.model_path, map_location=device)
model.load_state_dict(pth['model'])
loader = None
# 多张图片测试,直接制作dataloader
if args.dataset == 'DRIVE':
if args.is_val == 'val':
if args.manual == 'manual1':
loader = infmk(args=args).loader_manual_1
elif args.manual == 'manual2':
loader = infmk(args=args).loader_manual_2
elif args.is_val == 'train':
loader = infmk(args=args).train_dataset_manual_1
elif args.dataset == 'Chase_db1':
if args.manual == 'manual1':
loader = infmk(args=args).loader_manual_1
elif args.manual == 'manual2':
loader = infmk(args=args).loader_manual_2
elif args.dataset == 'RITE':
loader = originmk(args=args).val_loader
elif args.dataset == 'ISIC2018':
loader = originmk(args=args).val_loader
all_recall = 0.0
all_f1_score = 0.0
all_accuracy = 0.0
all_miou = 0.0
print('--------------------------------')
timer = Timer('Evaluating...')
model.eval()
with torch.no_grad():
for idx, (img, real_result) in enumerate(loader, start=0):
ground_truth = loader.dataset.manual[idx]
if args.dataset == 'ISIC2018':
ground_truth = transforms.Resize(512)(PIL.Image.open(ground_truth))
ground_truth = transforms.ToTensor()(ground_truth.convert('1')).to(torch.int64)
# elif args.dataset == 'Chase_db1':
# ground_truth = transforms.Resize(480)(PIL.Image.open(ground_truth))
# ground_truth = transforms.ToTensor()(ground_truth.convert('1')).to(torch.int64)
else:
ground_truth = transforms.Resize(loader.dataset.transforms.transforms.transforms[0].size)(
PIL.Image.open(ground_truth))
ground_truth = transforms.ToTensor()(ground_truth.convert('1')).to(torch.int64)
# ground_truth = transforms.ToTensor()(PIL.Image.open(ground_truth).convert('1')).to(torch.int64)
ground_truth = ground_truth.to(device)
img = img.to(device)
net_output = model(img)['out']
# 进行argmax操作
argmax_output = net_output.argmax(1)
# 1-的意思是,正例给血管
matrix.update(1 - ground_truth, 1 - argmax_output)
matrix.prf_compute()
all_accuracy += matrix.accuracy
all_recall += matrix.recall[0]
# 这里是二分类,定义血管白色为正例,所以precision和recall都是第一个,从而F1score也是第一个,故带下标0
all_f1_score += matrix.f1_score[0]
all_miou += matrix.miou
matrix.reset()
recall = all_recall / loader.__len__()
accuracy = all_accuracy / loader.__len__()
f1_score = all_f1_score / loader.__len__()
miou = all_miou / loader.__len__()
print("Time used: " + str(timer.get_stage_elapsed()))
print('Report:')
print('Recall:', recall.item())
print('Accuracy:', accuracy.item())
print('F1 Score:', f1_score.item())
print('mIoU:', miou.item())
print('--------------------------------')
def run_inference(args):
device = args.device
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
# load model
# model = create_unet_model(num_classes=args.num_classes + 1).to(device)
model = create_model(args=args).to(device)
pth = torch.load(args.model_path, map_location=device)
model.load_state_dict(pth['model'])
loader = None
# 多张图片测试,直接制作dataloader
if args.dataset == 'DRIVE':
if args.is_val == 'val':
if args.manual == 'manual1':
loader = infmk(args=args).loader_manual_1
elif args.manual == 'manual2':
loader = infmk(args=args).loader_manual_2
elif args.is_val == 'train':
loader = infmk(args=args).train_dataset_manual_1
elif args.dataset == 'Chase_db1':
if args.manual == 'manual1':
loader = infmk(args=args).loader_manual_1
elif args.manual == 'manual2':
loader = infmk(args=args).loader_manual_2
elif args.dataset == 'RITE':
loader = originmk(args=args).val_loader
elif args.dataset == 'ISIC2018':
loader = originmk(args=args).val_loader
model.eval()
if args.dataset == 'DRIVE':
with torch.no_grad():
for idx, (img, real_result) in enumerate(loader, start=0):
original_img = loader.dataset.img_list[idx]
ground_truth = loader.dataset.manual[idx]
roi_mask = loader.dataset.roi_mask[idx]
original_img = PIL.Image.open(original_img)
ground_truth = PIL.Image.open(ground_truth)
# double_img_show(format_convert(original_img), format_convert(ground_truth))
# same size
ground_truth = transforms.Resize(loader.dataset.transforms.transforms.transforms[0].size)(
ground_truth)
roi_mask = transforms.Resize(loader.dataset.transforms.transforms.transforms[0].size)(
PIL.Image.open(roi_mask))
img = img.to(device)
net_output = model(img)['out']
# val_range(net_output, "Network output")
# 进行argmax操作
argmax_output = net_output.argmax(1)
# val_range(argmax_output, "Argmax output")
# 注意此处必须先把tensor从gpu中拿到cpu才能转numpy
np_argmax_output = np.array(argmax_output.cpu())
# 0是黑,255是白,故要乘以255,0依旧是0,1则变成255
np_argmax_output = np_argmax_output.astype(np.uint8).squeeze(0) * 255
# val_range(np_argmax_output, "Numpy argmax output")
# 把周围跟mask处理一下
# roi_img = PIL.Image.open(roi_mask).convert('L')
roi_img = roi_mask.convert('L')
roi_img = np.array(roi_img)
np_argmax_output[roi_img == 0] = 0
# 生成带颜色的图片
color_img = generate_color_img(
ground_truth=transforms.ToTensor()(ground_truth.convert('1')).to(torch.int64),
prediction=argmax_output.cpu())
if args.show == 'yes':
triple_img_show(original_img=format_convert(original_img),
original_mask=format_convert(ground_truth),
predicted_img=format_convert(np_argmax_output))
img_show(img=color_img)
if args.visualization == 'all':
parent_dir = os.path.join('predict_pic', args.back_bone + '_' + args.is_mine + '_' + args.dataset)
generate_path(parent_dir)
predicted_img = format_convert(np_argmax_output)
this_img = os.path.basename(loader.dataset.img_list[idx])
this_img = this_img.split('.')[0]
save_img_name = os.path.join(parent_dir, this_img + '_' + args.back_bone + '_prediciton' + '.png')
save_img_name_color = os.path.join(parent_dir,
this_img + '_' + args.back_bone + '_prediciton_color' + '.png')
predicted_img.save(save_img_name)
color_img.save(save_img_name_color)
print('Have saved ' + save_img_name)
print('Have saved ' + save_img_name_color)
print('Done ' + '[' + str(idx + 1) + '/' + str(loader.dataset.__len__()) + ']')
elif args.dataset == 'Chase_db1':
with torch.no_grad():
for idx, (img, real_result) in enumerate(loader, start=0):
original_img = loader.dataset.img_list[idx]
ground_truth = loader.dataset.manual[idx]
original_img = PIL.Image.open(original_img)
ground_truth = PIL.Image.open(ground_truth)
# double_img_show(format_convert(original_img), format_convert(ground_truth))
img = img.to(device)
net_output = model(img)['out']
# val_range(net_output, "Network output")
# 进行argmax操作
argmax_output = net_output.argmax(1)
# val_range(argmax_output, "Argmax output")
# 注意此处必须先把tensor从gpu中拿到cpu才能转numpy
np_argmax_output = np.array(argmax_output.cpu())
# 0是黑,255是白,故要乘以255,0依旧是0,1则变成255
np_argmax_output = np_argmax_output.astype(np.uint8).squeeze(0) * 255
# val_range(np_argmax_output, "Numpy argmax output")
ground_truth = transforms.Resize(loader.dataset.transforms.transforms.transforms[0].size)(
ground_truth)
ground_truth = transforms.ToTensor()(ground_truth.convert('1')).to(torch.int64)
# 生成带颜色的图片
color_img = generate_color_img(
# ground_truth=transforms.ToTensor()(ground_truth.convert('1')).to(torch.int64),
ground_truth=ground_truth,
prediction=argmax_output.cpu())
if args.show == 'yes':
triple_img_show(original_img=format_convert(original_img),
original_mask=format_convert(ground_truth),
predicted_img=format_convert(np_argmax_output))
img_show(img=color_img)
if args.visualization == 'all':
parent_dir = os.path.join('predict_pic', args.back_bone + '_' + args.is_mine + '_' + args.dataset)
generate_path(parent_dir)
predicted_img = format_convert(np_argmax_output)
this_img = os.path.basename(loader.dataset.img_list[idx])
this_img = this_img.split('.')[0]
save_img_name = os.path.join(parent_dir, this_img + '_' + args.back_bone + '_prediciton' + '.png')
save_img_name_color = os.path.join(parent_dir,
this_img + '_' + args.back_bone + '_prediciton_color' + '.png')
predicted_img.save(save_img_name)
color_img.save(save_img_name_color)
print('Have saved ' + save_img_name)
print('Have saved ' + save_img_name_color)
print('Done ' + '[' + str(idx + 1) + '/' + str(loader.dataset.__len__()) + ']')
elif args.dataset == 'RITE':
with torch.no_grad():
for idx, (img, real_result) in enumerate(loader, start=0):
original_img = loader.dataset.img_list[idx]
ground_truth = loader.dataset.manual[idx]
original_img = PIL.Image.open(original_img)
ground_truth = PIL.Image.open(ground_truth)
# double_img_show(format_convert(original_img), format_convert(ground_truth))
img = img.to(device)
net_output = model(img)['out']
# val_range(net_output, "Network output")
# 进行argmax操作
argmax_output = net_output.argmax(1)
# val_range(argmax_output, "Argmax output")
# 注意此处必须先把tensor从gpu中拿到cpu才能转numpy
np_argmax_output = np.array(argmax_output.cpu())
# 0是黑,255是白,故要乘以255,0依旧是0,1则变成255
np_argmax_output = np_argmax_output.astype(np.uint8).squeeze(0) * 255
# val_range(np_argmax_output, "Numpy argmax output")
# 生成带颜色的图片
color_img = generate_color_img(
ground_truth=transforms.ToTensor()(ground_truth.convert('1')).to(torch.int64),
prediction=argmax_output.cpu())
if args.show == 'yes':
triple_img_show(original_img=format_convert(original_img),
original_mask=format_convert(ground_truth),
predicted_img=format_convert(np_argmax_output))
img_show(img=color_img)
if args.visualization == 'all':
parent_dir = os.path.join('predict_pic', args.back_bone + '_' + args.is_mine + '_' + args.dataset)
generate_path(parent_dir)
predicted_img = format_convert(np_argmax_output)
this_img = os.path.basename(loader.dataset.img_list[idx])
this_img = this_img.split('.')[0]
save_img_name = os.path.join(parent_dir, this_img + '_' + args.back_bone + '_prediciton' + '.png')
save_img_name_color = os.path.join(parent_dir,
this_img + '_' + args.back_bone + '_prediciton_color' + '.png')
predicted_img.save(save_img_name)
color_img.save(save_img_name_color)
print('Have saved ' + save_img_name)
print('Have saved ' + save_img_name_color)
print('Done ' + '[' + str(idx + 1) + '/' + str(loader.dataset.__len__()) + ']')
elif args.dataset == 'ISIC2018':
with torch.no_grad():
for idx, (img, real_result) in enumerate(loader, start=0):
original_img = loader.dataset.img_list[idx]
ground_truth = loader.dataset.manual[idx]
original_img = PIL.Image.open(original_img)
ground_truth = PIL.Image.open(ground_truth)
# double_img_show(format_convert(original_img), format_convert(ground_truth))
img = img.to(device)
net_output = model(img)['out']
# val_range(net_output, "Network output")
# 进行argmax操作
argmax_output = net_output.argmax(1)
# val_range(argmax_output, "Argmax output")
# 注意此处必须先把tensor从gpu中拿到cpu才能转numpy
np_argmax_output = np.array(argmax_output.cpu())
# 0是黑,255是白,故要乘以255,0依旧是0,1则变成255
np_argmax_output = np_argmax_output.astype(np.uint8).squeeze(0) * 255
# val_range(np_argmax_output, "Numpy argmax output")
ground_truth = transforms.Resize(512)(ground_truth)
ground_truth = transforms.ToTensor()(ground_truth.convert('1')).to(torch.int64)
# 生成带颜色的图片
color_img = generate_color_img(
ground_truth=ground_truth,
prediction=argmax_output.cpu())
if args.show == 'yes':
triple_img_show(original_img=format_convert(original_img),
original_mask=format_convert(ground_truth),
predicted_img=format_convert(np_argmax_output))
img_show(img=color_img)
if args.visualization == 'all':
parent_dir = os.path.join('predict_pic', args.back_bone + '_' + args.is_mine + '_' + args.dataset)
generate_path(parent_dir)
predicted_img = format_convert(np_argmax_output)
this_img = os.path.basename(loader.dataset.img_list[idx])
this_img = this_img.split('.')[0]
save_img_name = os.path.join(parent_dir, this_img + '_' + args.back_bone + '_prediciton' + '.png')
save_img_name_color = os.path.join(parent_dir,
this_img + '_' + args.back_bone + '_prediciton_color' + '.png')
predicted_img.save(save_img_name)
color_img.save(save_img_name_color)
print('Have saved ' + save_img_name)
print('Have saved ' + save_img_name_color)
print('Done ' + '[' + str(idx + 1) + '/' + str(loader.dataset.__len__()) + ']')
def generate_path(path):
if not os.path.exists(path):
os.mkdir(path)
if __name__ == '__main__':
args = parse_arguments()
if not os.path.exists(args.model_path):
raise ValueError('model path does not exist!')
args.back_bone = args.model_path.split('/')[-1:][0].split('-')[1]
args.dataset = args.model_path.split('/')[-2:][0]
if args.model_path.split('/')[-1:][0].split('-')[3] == '0' or \
args.model_path.split('/')[-1:][0].split('-')[3] == '0.0':
args.is_mine = 'origin'
else:
args.is_mine = 'mine'
# 当显存不够时使用
# args.device = 'cpu'
# 预测图存储位置
generate_path('predict_pic/')
compute_index(args=args)
# run_inference(args=args)