-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathvargp_retrain.py
267 lines (202 loc) · 9.49 KB
/
vargp_retrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import torch
import torch.nn as nn
import torch.distributions as dist
from torch.distributions.kl import kl_divergence
from .gp_utils import vec2tril, cholesky, rev_cholesky, gp_cond, linear_joint, linear_marginal_diag
from .kernels import RBFKernel
from .likelihoods import MulticlassSoftmax
class VARGPRetrain(nn.Module):
def __init__(self, z_init, kernel, likelihood, n_var_samples=1, prev_params=None):
super().__init__()
self.prev_params = prev_params
self.retrain_params = prev_params
if prev_params:
self.retrain_params = nn.ModuleList([
nn.ParameterDict(dict(
z=nn.Parameter(p['z']),
u_mean=nn.Parameter(p['u_mean']),
u_tril_vec=nn.Parameter(p['u_tril_vec']),
))
for p in prev_params
])
self.M = z_init.size(-2)
self.kernel = kernel
self.n_v = n_var_samples
self.likelihood = likelihood
self.z = nn.Parameter(z_init.detach())
out_size = self.z.size(0)
self.u_mean = nn.Parameter(torch.Tensor(out_size, self.M, 1).normal_(0., .5))
self.u_tril_vec = nn.Parameter(torch.ones(out_size, (self.M * (self.M + 1)) // 2))
def compute_q(self, theta, prev_params, cache=None):
'''
Compute variational auto-regressive distributions.
Arguments:
theta: n_hypers x (D + 1)
Returns
mu_lt: n_hypers x out_size x (\sum M_t - M_T) x 1
S_lt: n_hypers x out_size x (\sum M_t - M_T) x (\sum M_t - M_T)
mu_leq_t: n_hypers x out_size x (\sum M_t) x 1
S_leq_t: n_hypers x out_size x (\sum M_t) x (\sum M_t)
z_leq_t: out_size x (\sum M_t) x D
'''
n_hypers = theta.size(0)
## Compute q(u_{<t} | \theta)
z_lt = prev_params[0]['z']
mu_lt = prev_params[0]['u_mean']
S_lt = rev_cholesky(vec2tril(prev_params[0]['u_tril_vec']))
if mu_lt.dim() == 3:
mu_lt = mu_lt.unsqueeze(0).expand(n_hypers, -1, -1, -1)
if S_lt.dim() == 3:
S_lt = S_lt.unsqueeze(0).expand(n_hypers, -1, -1, -1)
for params in prev_params[1:]:
Kzx = self.kernel.compute(theta, z_lt, params['z'])
Kzz = self.kernel.compute(theta, z_lt)
V = rev_cholesky(vec2tril(params['u_tril_vec'])).unsqueeze(0).expand(n_hypers, -1, -1, -1)
b = params['u_mean'].unsqueeze(0).expand(n_hypers, -1, -1, -1)
mu_lt, S_lt = linear_joint(mu_lt, S_lt, Kzx, Kzz, V, b)
z_lt = torch.cat([z_lt, params['z']], dim=-2)
## Compute q(u_{\leq t} | \theta)
Kzx = self.kernel.compute(theta, z_lt, self.z)
Kzz = self.kernel.compute(theta, z_lt)
V = rev_cholesky(vec2tril(self.u_tril_vec)).unsqueeze(0).expand(n_hypers, -1, -1, -1)
b = self.u_mean.unsqueeze(0).expand(n_hypers, -1, -1, -1)
cache_leq_t = dict()
mu_leq_t, S_leq_t = linear_joint(mu_lt, S_lt, Kzx, Kzz, V, b, cache=cache_leq_t)
z_leq_t = torch.cat([z_lt, self.z], dim=-2)
if isinstance(cache, dict):
cache['Lz_lt'] = cache_leq_t['Lz']
cache['Lz_lt_Kz_lt_z_t'] = cache_leq_t['Lz_Kzx']
return mu_lt, S_lt, \
mu_leq_t, S_leq_t, \
z_lt, z_leq_t
def compute_pf_diag(self, theta, x, mu_leq_t, S_leq_t, z_leq_t, cache=None):
'''
Compute p(f) = \int p(f|u_{\leq t})q(u_{\leq t}).
Only diagonal of covariance for p(f) is used.
Arguments:
theta: n_hypers x (D + 1)
x: B x D
mu_leq_t: [n_hypers] x out_size x (\sum M_t) x 1
S_leq_t: [n_hypers] x out_size x (\sum M_t) x (\sum M_t)
z_leq_t: out_size x (\sum M_t) x D
Returns:
f_mean: n_hypers x out_size x B
f_var: n_hypers x out_size x B
'''
xf = x.unsqueeze(0).expand(z_leq_t.size(0), -1, -1)
Kzz = self.kernel.compute(theta, z_leq_t)
Kzx = self.kernel.compute(theta, z_leq_t, xf)
Kxx_diag = self.kernel.compute_diag(theta)
f_mean, f_var = linear_marginal_diag(mu_leq_t, S_leq_t, Kzz, Kzx, Kxx_diag, cache=cache)
return f_mean, f_var
def forward(self, x, loss_cache=False):
'''
Arguments:
x: B x in_size
Returns:
Output distributions for n_hypers samples of hyperparameters.
The output contains only diagonal of the full covariance.
pred_mu: n_hypers x out_size x B
pred_var: n_hypers x out_size x B
'''
theta = self.kernel.sample_hypers(self.n_v)
if self.prev_params:
cache_q = dict()
cache_pf = dict()
mu_lt, S_lt, mu_leq_t, S_leq_t, _, z_leq_t = self.compute_q(theta, self.retrain_params, cache=cache_q)
pred_mu, pred_var = self.compute_pf_diag(theta, x, mu_leq_t, S_leq_t, z_leq_t, cache=cache_pf)
if isinstance(loss_cache, dict):
## Compute p(u_{\leq t} | \theta)
prior_mu_leq_t = torch.zeros_like(mu_leq_t)
prior_S_leq_t = self.kernel.compute(theta, z_leq_t)
## Compute q(\tilde{u}_{< t} | \theta)
mu_lt_tilde, S_lt_tilde, *_, z_lt_tilde, _ = self.compute_q(theta, self.prev_params)
## Compute p(\tilde{u}_{< t} | \theta)
prior_mu_lt_tilde = torch.zeros_like(mu_lt_tilde)
prior_S_lt_tilde = self.kernel.compute(theta, z_lt_tilde)
## Compute samples \tilde{u}_{< t} from q(u_{\leq t} | \theta) p(\tilde{u}_{< t} | u_{\leq t}, \theta)
q_leq_t = dist.MultivariateNormal(mu_leq_t.squeeze(-1), scale_tril=cholesky(S_leq_t))
u_leq_t = q_leq_t.sample(torch.Size([self.n_v])).unsqueeze(-1)
Kzz = self.kernel.compute(theta, z_leq_t).unsqueeze(0).expand(self.n_v, -1, -1, -1, -1)
Kzx = self.kernel.compute(theta, z_leq_t, z_lt_tilde).unsqueeze(0).expand(self.n_v, -1, -1, -1, -1)
Kxx = self.kernel.compute(theta, z_lt_tilde).unsqueeze(0).expand(self.n_v, -1, -1, -1, -1)
p_mu_lt_tilde, p_S_lt_tilde = gp_cond(u_leq_t, Kzz, Kzx, Kxx)
p_lt_tilde = dist.MultivariateNormal(p_mu_lt_tilde.squeeze(-1), scale_tril=cholesky(p_S_lt_tilde))
u_lt_tilde = p_lt_tilde.sample(torch.Size([self.n_v]))
loss_cache.update(dict(var_mu_leq_t=mu_leq_t.squeeze(-1), var_L_leq_t=cholesky(S_leq_t),
prior_mu_leq_t=prior_mu_leq_t.squeeze(-1), prior_L_leq_t=cholesky(prior_S_leq_t),
var_mu_lt_tilde=mu_lt_tilde.squeeze(-1), var_L_lt_tilde=cholesky(S_lt_tilde),
prior_mu_lt_tilde=prior_mu_lt_tilde.squeeze(-1), prior_L_lt_tilde=cholesky(prior_S_lt_tilde),
u_lt_tilde=u_lt_tilde))
else:
cache_pf = dict()
mu_leq_t = self.u_mean
L_cov_leq_t = vec2tril(self.u_tril_vec, self.M)
pred_mu, pred_var = self.compute_pf_diag(theta, x, mu_leq_t, rev_cholesky(L_cov_leq_t), self.z, cache=cache_pf)
if isinstance(loss_cache, dict):
# Compute q(u_1)
mu_t = mu_leq_t.squeeze(-1).unsqueeze(0).unsqueeze(0)
L_cov_t = L_cov_leq_t.unsqueeze(0).unsqueeze(0)
# Compute p(u_1)
prior_mu_t = torch.zeros_like(mu_t)
prior_L_cov_t = cache_pf.pop('Lz').unsqueeze(0)
loss_cache.update(dict(var_mu_t=mu_t, var_L_cov_t=L_cov_t, prior_mu_t=prior_mu_t, prior_L_cov_t=prior_L_cov_t))
return pred_mu, pred_var
def loss(self, x, y):
loss_cache = dict()
pred_mu, pred_var = self(x, loss_cache=loss_cache)
nll = self.likelihood.loss(pred_mu, pred_var, y)
kl_u = torch.tensor(0.0, device=x.device)
if self.prev_params:
q_leq_t = dist.MultivariateNormal(
loss_cache.pop('var_mu_leq_t'),
scale_tril=loss_cache.pop('var_L_leq_t'))
p_leq_t = dist.MultivariateNormal(
loss_cache.pop('prior_mu_leq_t'),
scale_tril=loss_cache.pop('prior_L_leq_t'))
kl_u = kl_divergence(q_leq_t, p_leq_t).sum(dim=-1).mean(dim=0)
q_lt_tilde = dist.MultivariateNormal(
loss_cache.pop('var_mu_lt_tilde'),
scale_tril=loss_cache.pop('var_L_lt_tilde'))
p_lt_tilde = dist.MultivariateNormal(
loss_cache.pop('prior_mu_lt_tilde'),
scale_tril=loss_cache.pop('prior_L_lt_tilde'))
u_lt_tilde = loss_cache.pop('u_lt_tilde')
tilde_ratio = (p_lt_tilde.log_prob(u_lt_tilde) - q_lt_tilde.log_prob(u_lt_tilde)).sum(dim=-1).mean(dim=-1).mean(dim=-1).mean(dim=-1)
kl_u = kl_u + tilde_ratio
else:
var_dist = dist.MultivariateNormal(
loss_cache.pop('var_mu_t'),
scale_tril=loss_cache.pop('var_L_cov_t'))
prior_dist = dist.MultivariateNormal(
loss_cache.pop('prior_mu_t'),
scale_tril=loss_cache.pop('prior_L_cov_t'))
kl_u = kl_divergence(var_dist, prior_dist).sum(dim=-1).mean(dim=0).mean(dim=0)
kl_hypers = self.kernel.kl_hypers()
return kl_hypers, kl_u, nll
def predict(self, x):
pred_mu, pred_var = self(x)
return self.likelihood.predict(pred_mu, pred_var)
@staticmethod
def create_clf(dataset, M=20, n_f=10, n_var_samples=3, prev_params=None):
N = len(dataset)
out_size = torch.unique(dataset.targets).size(0)
## init inducing points at random data points.
z = torch.stack([
dataset[torch.randperm(N)[:M]][0]
for _ in range(out_size)])
prior_log_mean, prior_log_logvar = None, None
## TODO: Need to handle all the new param structure for T>2?
if prev_params:
prior_log_mean = prev_params[-1].get('kernel.log_mean')
prior_log_logvar = prev_params[-1].get('kernel.log_logvar')
def process(p):
for k in list(p.keys()):
if k.startswith('kernel'):
p.pop(k)
return p
prev_params = [process(p) for p in prev_params]
kernel = RBFKernel(z.size(-1), prior_log_mean=prior_log_mean, prior_log_logvar=prior_log_logvar)
likelihood = MulticlassSoftmax(n_f=n_f)
gp = VARGPRetrain(z, kernel, likelihood, n_var_samples=n_var_samples, prev_params=prev_params)
return gp