Model | Description | Dataset | Download |
---|---|---|---|
transformer_lm.gbw.adaptive_huge |
Adaptive Inputs (Baevski and Auli, 2018) 1026M params |
Google Billion Words | download (.tar.bz2) |
transformer_lm.wiki103.adaptive |
Adaptive Inputs (Baevski and Auli, 2018) 247M params |
WikiText-103 | download (.tar.bz2) |
transformer_lm.wmt19.en |
English LM (Ng et al., 2019) |
WMT News Crawl | download (.tar.gz) |
transformer_lm.wmt19.de |
German LM (Ng et al., 2019) |
WMT News Crawl | download (.tar.gz) |
transformer_lm.wmt19.ru |
Russian LM (Ng et al., 2019) |
WMT News Crawl | download (.tar.gz) |
To sample from a language model using PyTorch Hub:
import torch
# List available models
torch.hub.list('pytorch/fairseq') # [..., 'transformer_lm.wmt19.en', ...]
# Load an English LM trained on WMT'19 News Crawl data
en_lm = torch.hub.load('pytorch/fairseq', 'transformer_lm.wmt19.en', tokenizer='moses', bpe='fastbpe')
# Sample from the language model
en_lm.sample('Barack Obama', beam=1, sampling=True, sampling_topk=10, temperature=0.8)
# "Barack Obama is coming to Sydney and New Zealand (...)"
# The same interface can be used with custom models as well
from fairseq.models.transformer_lm import TransformerLanguageModel
custom_lm = TransformerLanguageModel.from_pretrained('/path/to/model/dir', 'checkpoint100.pt', tokenizer='moses', bpe='fastbpe')
custom_lm.sample('Barack Obama', beam=5)
# "Barack Obama (...)"
First download and prepare the WikiText-103 dataset:
cd examples/language_model/
bash prepare-wikitext-103.sh
cd ../..
Next preprocess/binarize the data:
TEXT=examples/language_model/wikitext-103
fairseq-preprocess \
--only-source \
--trainpref $TEXT/wiki.train.tokens \
--validpref $TEXT/wiki.valid.tokens \
--testpref $TEXT/wiki.test.tokens \
--destdir data-bin/wikitext-103 \
--workers 20
Next we'll train a transformer language model using adaptive inputs:
fairseq-train --task language_modeling \
data-bin/wikitext-103 \
--save-dir checkpoints/transformer_wikitext-103 \
--arch transformer_lm_wiki103 \
--max-update 286000 --max-lr 1.0 --t-mult 2 --lr-period-updates 270000 --lr-scheduler cosine --lr-shrink 0.75 \
--warmup-updates 16000 --warmup-init-lr 1e-07 --min-lr 1e-09 --optimizer nag --lr 0.0001 --clip-norm 0.1 \
--criterion adaptive_loss --max-tokens 3072 --update-freq 3 --tokens-per-sample 3072 --seed 1 \
--sample-break-mode none --skip-invalid-size-inputs-valid-test --ddp-backend=no_c10d
If the above command runs out of memory, try reducing --max-tokens
(max number
of tokens per batch) or --tokens-per-sample
(max sequence length). You can
also increase --update-freq
to accumulate gradients and simulate training on
more GPUs.
fairseq-eval-lm data-bin/wikitext-103 \
--path checkpoints/transformer_wiki103/checkpoint_best.pt \
--sample-break-mode complete --max-tokens 3072 \
--context-window 2560 --softmax-batch 1024
Please see the convolutional LM README for instructions to train convolutional language models.