-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathwercker.yml
37 lines (33 loc) · 2.25 KB
/
wercker.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Wercker configuration file
box: conda/miniconda3
no-response-timeout: 600
command-timeout: 600
build:
steps:
- script:
name: install
code: |
# conda update -y -n base -c defaults conda
# conda install -y -c conda-forge imagecodecs-lite
conda install -y -c pytorch faiss-cpu
# sudo cp /etc/apt/sources.list /etc/apt/sources.list~
# cat /etc/apt/sources.list
# sudo sed -Ei 's/^# deb/deb/' /etc/apt/sources.list
sudo apt-get update
# sudo apt-get build-dep python3-brotli
sudo apt-get -y install build-essential python3-dev cython3 python3-setuptools python3-pip python3-wheel python3-numpy libz-dev libblosc-dev liblzma-dev liblz4-dev libzstd-dev libpng-dev libwebp-dev libbz2-dev libopenjp2-7-dev libjpeg62-turbo-dev libjxr-dev liblcms2-dev libtiff-dev
sudo apt-get -y install build-essential unzip libboost-all-dev libgsl0-dev libeigen3-dev libopenblas-dev apt-utils git libz-dev libblosc-dev liblzma-dev liblz4-dev libzstd-dev libpng-dev libwebp-dev libbz2-dev libopenjp2-7-dev libjxr-dev liblcms2-dev libcharls-dev libaec-dev libsnappy-dev libzopfli-dev libgif-dev libtiff-dev
# pip install torch==1.5.0+cpu torchvision==0.6.0+cpu -f https://download.pytorch.org/whl/torch_stable.html
python -m pip install nltk parsimonious tabulate termcolor tqdm scikit-learn scipy PyYAML colorclass terminaltables sklearn nmslib ax-platform pytest pytest-xdist pytest-forked
python -m pip install --upgrade allennlp==0.9
python -m pip install --upgrade torch==1.5.0+cpu torchvision==0.6.0+cpu -f https://download.pytorch.org/whl/torch_stable.html
export CUDA="cpu"
python -m pip install torch-scatter==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-1.5.0.html
python -m pip install torch-sparse==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-1.5.0.html
python -m pip install torch-cluster==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-1.5.0.html
python -m pip install torch-spline-conv==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-1.5.0.html
python -m pip install "torch-geometric<=1.5"
- script:
name: Run unit tests
code: |
python -m pytest tests -v