-
Zhejiang University
- Hangzhou, China
Stars
中英文敏感词、语言检测、中外手机/电话归属地/运营商查询、名字推断性别、手机号抽取、身份证抽取、邮箱抽取、中日文人名库、中文缩写库、拆字词典、词汇情感值、停用词、反动词表、暴恐词表、繁简体转换、英文模拟中文发音、汪峰歌词生成器、职业名称词库、同义词库、反义词库、否定词库、汽车品牌词库、汽车零件词库、连续英文切割、各种中文词向量、公司名字大全、古诗词库、IT词库、财经词库、成语词库、地名词库、…
A Powerful Spider(Web Crawler) System in Python.
🏄 Scalable embedding, reasoning, ranking for images and sentences with CLIP
Retrieval and Retrieval-augmented LLMs
Flappy Bird hack using Deep Reinforcement Learning (Deep Q-learning).
A tutorial and implement of disease centered Medical knowledge graph and qa system based on it。知识图谱构建,自动问答,基于kg的自动问答。以疾病为中心的一定规模医药领域知识图谱,并以该知识图谱完成自动问答与分析服务。
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services
A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS, 海量中文预训练ALBERT模型
A python application that detects and highlights the heart-rate of an individual (using only their own webcam) in real-time.
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.
收录NLP竞赛策略实现、各任务baseline、相关竞赛经验贴(当前赛事、往期赛事、训练赛)、NLP会议时间、常用自媒体、GPU推荐等,持续更新中
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)
Language Understanding Evaluation benchmark for Chinese: datasets, baselines, pre-trained models,corpus and leaderboard
State-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc.
WaveGAN: Learn to synthesize raw audio with generative adversarial networks
Entity and Relation Extraction Based on TensorFlow and BERT. 基于TensorFlow和BERT的管道式实体及关系抽取,2019语言与智能技术竞赛信息抽取任务解决方案。Schema based Knowledge Extraction, SKE 2019
Taskonomy: Disentangling Task Transfer Learning [Best Paper, CVPR2018]
ccks baidu entity link 实体链接 第一名
中文医疗信息处理基准CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark
This is the code for "Capsule Networks: An Improvement to Convolutional Networks" by Siraj Raval on Youtube
Code for Deep RL from Human Preferences [Christiano et al]. Plus a webapp for collecting human feedback