-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoptimize_dist_ev.py
172 lines (160 loc) · 7.14 KB
/
optimize_dist_ev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import csv
import sys
import time
import signal
import argparse
import matplotlib
import numpy as np
import multiprocessing
from optimization_helper import generate_log, init_population, compute_population_fitness, select_dist, \
mutate_deg, generate_plot, norm_list, merge_crossover, merge_best_dist
matplotlib.use('Agg')
import matplotlib.pyplot as plt
class EvolutionaryOptimizer:
def __init__(self, pop_size, max_gen, log, merge, mut_rate, fast=False):
self.pop_size = pop_size
self.max_gen = max_gen
self.log = log
self.merge = merge
self.fast = fast
self.mut_rate = mut_rate
try:
if log:
self.pid = os.getpid()
self.dir = "EvOpt_" + str(pop_size) + "_" + str(max_gen) + "_" + str(merge) + "_" + str(
mut_rate) + "_" + str(self.pid)
os.mkdir(self.dir)
self.file = self.dir + "/"
self.file_con = []
signal.signal(signal.SIGHUP, self.read_sig)
signal.signal(signal.SIGKILL, self.kill_sig)
except FileExistsError:
print("Dir already exists, using it anyway.")
except:
print("Can't use signals.")
def read_sig(self, signal_number, frame):
generate_log(self.file_con, "EvOpt_" + str(self.pid) + "cache")
print("File saved, process continuing.")
def kill_sig(self, signal_number, frame):
generate_log(self.file_con, "EvOpt_+" + str(self.pid) + "end")
print("File saved, process killed.")
sys.exit()
def evolutionary_optimization(self, population=None):
"""
Generate population, compute population fitness, select fittest as parents, merge parent distributions, repeat.
:param population:
:return:
"""
# initialize the first population
if population is None:
population = init_population(self.pop_size)
for gen in range(0, self.max_gen):
# compute population fitness and select best distributions as parent
pop_fitness = compute_population_fitness(population, self.fast)
sel_dist_list = select_dist(pop_fitness)
population = self.compute_population(sel_dist_list)
# random mutations
population = [mutate_deg(x, self.mut_rate, 5, 20) for x in population]
if self.log:
avg_par_err = sum(x[2] for x in sel_dist_list) / len(sel_dist_list)
self.file_con.append([gen, avg_par_err, time.time(), [[x[0], x[2]] for x in sel_dist_list]])
# get best distribution
fittest_dist = select_dist(compute_population_fitness(population, self.fast))[0]
# logging and plotting
if self.log:
self.file_con.append([self.max_gen, fittest_dist[2], time.time(), [fittest_dist[0], fittest_dist[2]]])
generate_log(self.file_con, self.file + "log")
generate_plot(self.file_con, self.file + "plot", self.max_gen)
return fittest_dist, self.pid
def compute_population(self, sel_dist_list):
"""
Computes a new population from the fittest distributions of the previous one with the choosen merge strategy.
:param sel_dist_list:
:return:
"""
pop = []
ind_lst = [x for x in range(0, len(sel_dist_list))]
err_lst = [x[2] for x in sel_dist_list]
prob_lst = norm_list(err_lst)
if self.merge == 'crossover':
dist_lst = [x[0] for x in sel_dist_list]
for _ in range(0, int(self.pop_size / 2)):
dist_choice = np.random.choice(ind_lst, size=2, p=prob_lst)
res = merge_crossover(dist_lst[dist_choice[0]], dist_lst[dist_choice[1]])
pop.extend(res)
if self.merge == 'best' or self.merge == 'bestfit':
if self.merge == 'bestfit':
pop.append(sel_dist_list[0][0])
while len(pop) < self.pop_size:
dist_choice = np.random.choice(ind_lst, size=2, p=prob_lst)
res = merge_best_dist(sel_dist_list[dist_choice[0]], sel_dist_list[dist_choice[1]])
pop.append(res)
if len(pop) > self.pop_size:
del pop[-1]
return pop
def main(params, fast=True):
"""
:param params: Tuple of params: (pop_size, max_gen, log, merge)
:param fast:
:return:
"""
opt = EvolutionaryOptimizer(params[0], params[1], params[2], params[3], params[4], fast)
res = opt.evolutionary_optimization()
return res
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("filename", metavar="file", type=str, help="the file to Encode")
parser.add_argument("--pop_size", metavar="pop_size", required=False, type=int, action="append",
help="list of population sizes for each generation")
parser.add_argument("--max_gen", metavar="max_gen", required=False, type=int, action="append",
help="list of numbers of generations to compute")
parser.add_argument("--mut_rate", metavar="mut_rate", required=False, type=float, action="append",
help="mutation rate for random mutations")
parser.add_argument("--log", metavar="log", required=False, type=bool, default=False,
help="log results as csv")
parser.add_argument("--spare1core", required=False, default=False, action="store_true")
parser.add_argument("--merge", metavar="merge", required=False, type=str, action="append",
help='choose between crossover, best and bestfit')
parser.add_argument("--cores", required=False, type=int)
args = parser.parse_args()
filename = args.filename
pop_size = args.pop_size
max_gen = args.max_gen
mut_rate = args.mut_rate
log = args.log
spare1core = args.spare1core
merge = args.merge
if args.cores:
cores = args.cores
else:
cores = multiprocessing.cpu_count()
params = []
if spare1core:
cores = cores - 1
# fill missing params
if len(pop_size) < cores:
[pop_size.append(2) for _ in range(0, cores - len(pop_size))]
if len(max_gen) < cores:
[max_gen.append(2) for _ in range(0, cores - len(max_gen))]
if len(merge) < cores:
[merge.append('bestfit') for _ in range(0, cores - len(merge))]
if len(mut_rate) < cores:
[mut_rate.append(0.01) for _ in range(0, cores - len(mut_rate))]
for i in range(0, cores):
params.append((pop_size[i], max_gen[i], log, merge[i], mut_rate[i]))
p = multiprocessing.Pool(cores)
a = p.map(main, params)
# log and plot overall results
if log:
with open("EvOpt_overall.csv", 'w', newline='') as f:
writer = csv.writer(f, delimiter=',', lineterminator='\n', quotechar='|', quoting=csv.QUOTE_MINIMAL)
writer.writerow(['dist', 'errs', 'avg_err'])
for item in a:
writer.writerow([item[0][0], item[0][1], item[0][2]])
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1])
errs = [x[0][2] for x in a]
labs = [x[1] for x in a]
ax.bar(labs, errs)
plt.savefig("EvOpt_overall.png")