forked from iemre/MRSR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUIMatrixUtils.m
202 lines (164 loc) · 7.22 KB
/
UIMatrixUtils.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
% =====================================================================
% This class contains some useful static methods for User-Item matrix
% operations.
% =====================================================================
classdef UIMatrixUtils
methods(Static)
function result = userHasRatedItem(uiMatrix, userIndex, itemIndex, nilElement)
% returns true if rating at (userIndex, itemIndex)
% is not equal to nilElement
if uiMatrix(userIndex, itemIndex) == nilElement
result = 0;
return;
end
result = 1;
end
function result = userHasNotRatedItem(uiMatrix, userIndex, itemIndex, nilElement)
result = UIMatrixUtils.userHasRatedItem(uiMatrix, userIndex, itemIndex, nilElement) == 0;
end
function result = userHasNoRatings(uiMatrix, userIndex, nilElement)
% returns true if the given user has no
% ratings data in the given user-item matrix
if any(uiMatrix(userIndex, :) ~= nilElement)
result = 0;
return;
end
result = 1;
end
function sparsityRate = sparsity(A, nilElement)
% returns the sparsity level of matrix
% formula: (#zero_elements) / (#all_elements)
zeroElements = length(find(A == nilElement));
[r, c] = size(A);
total = r * c;
sparsityRate = zeroElements/total;
end
function densityRate = density(A, nilElement)
% returns the DensityRate of matrix A
% DensityRate = 1 - sparsity (see the function sparsityRate)
densityRate = 1 - UIMatrixUtils.sparsity(A, nilElement);
end
function result = isCellArrayEmpty(cellArray)
if iscell(cellArray) == 0
error('isCellArrayEmpty: Argument is not of type cell');
end
for i = 1:length(cellArray)
if isempty(cellArray{i}) == 0
result = 0;
return;
end
end
result = 1;
end
function result = hoyerSparseness(sparseMatrix)
% calculates the sparseness defined in
% "Non-negative Matrix Factorization with
% Sparseness Constraints" by Hoyer
% the input sparseMatrix is assumed to have the sparse
% representations of signals as columns
colCount = length(sparseMatrix(1, :));
rowCount = length(sparseMatrix(:, 1));
totalCount = 0;
totalSparsity = 0;
for i = 1:colCount
l1Norm = norm(sparseMatrix(:, i), 1);
l2Norm = norm(sparseMatrix(:, i), 2);
sh = sqrt(rowCount) - (l1Norm/l2Norm);
if isnan(sh)
sh = 0;
end
sh = sh / (sqrt(rowCount) - 1);
totalSparsity = totalSparsity + sh;
totalCount = totalCount + 1;
end
result = totalSparsity / totalCount;
end
function result = getVectorDensity(vector, nilElement)
result = length(vector(vector ~= nilElement)) / length(vector);
end
function result = normaliseVector(vector, nilElement)
% maps vector elements to a scale of 0-1
[rowCount, colCount] = size(vector);
if rowCount ~= 1 && colCount ~= 1
error('Cannot normalise a matrix that is not a vector');
end
elementCount = max(rowCount, colCount);
maxVal = max(vector);
minVal = min(vector);
result = ones(1, elementCount) * nilElement;
for i = 1:elementCount
if isinf(vector(i))
result(i) = 1;
end
if vector(i) == nilElement
continue;
end
result(i) = (vector(i)-minVal) / (maxVal-minVal);
end
end
function result = getNumberOfRatingsOfUser(matrix, userIndex, nilElement)
result = length(find(matrix(userIndex, :) ~= nilElement));
end
function [predictions, topNIndexes] = getSortedTopNListOfPredictions(n, predictedUserRatings)
[predictions, topNIndexes] = sort(predictedUserRatings, 'descend');
if length(topNIndexes) > n
topNIndexes = topNIndexes(1:n);
predictions = predictions(1:n);
end
end
function result = filterGivenRatingsOfUser(userIndex, userRatingList, baseSet, nilElement)
[m, n] = size(userRatingList);
if m ~= 1 && n ~= 1
error('userRatingList must be a vector');
end
userRatingList(baseSet(userIndex, :) ~= nilElement) = nilElement;
result = userRatingList;
end
function result = mergeBaseAndTestSet(baseSet, testSet, nilElement)
result = baseSet;
result(testSet ~= nilElement) = testSet(testSet ~= nilElement);
end
function result = removeRowsWithNilRatingsInColumn(matrix, columnIndex, nilElement)
nilRows = matrix(:, columnIndex) == nilElement;
matrix(nilRows, :) = [];
result = matrix;
end
function [itemIndices, matrix] = getItemsRatedByAllUsers(data, nilElement)
% returns a pair [itemIndices, matrix]
% matrix includes only the items rated by all users
% itemIndices are indices of items in the original data
% which are rated by all users
[rows, cols] = size(data);
itemIndices = [];
matrix = [];
counter = 1;
for j = 1:cols
ratedByAll = logical(1);
for i = 1:rows
if data(i, j) == nilElement
ratedByAll = logical(0);
break;
end
end
if ratedByAll
itemIndices(counter) = j;
matrix(:, counter) = data(:, j);
counter = counter + 1;
end
end
end
function result = getNumberOfRatingsGivenToItem(data, itemIndex, nilElement)
result = length(find(data(:, itemIndex) ~= nilElement));
end
function itemIndices = getItemsRatedByUser(matrix, userIndex, nilElement)
itemIndices = find(matrix(userIndex, :) ~= nilElement);
end
function result = getAverageRatingOfUser(data, userIndex, nilElement)
userRatings = data(userIndex, :);
result = mean(userRatings(userRatings ~= nilElement));
end
function result = getAverageRating(data, nilElement)
result = mean(data(data ~= nilElement));
end
end
end