This page contains a list of example codes written with Optuna.
- Scikit-learn
- Scikit-image
- Chainer
- ChainerMN
- Dask-ML
- LightGBM
- LightGBM Tuner
- CatBoost
- MXNet
- PyTorch
- PyTorch Ignite
- PyTorch Lightning
- XGBoost
- Tensorflow
- Tensorflow(eager)
- Keras
- FastAI
- AllenNLP
The following example demonstrates how to implement an objective function that uses additional arguments other than trial
.
The following example demonstrates how to implement pruning logic with Optuna.
In addition, integration modules are available for the following libraries, providing simpler interfaces to utilize pruning.
- Pruning with Chainer integration module
- Pruning with XGBoost integration module
- Pruning with XGBoost integration module (cross validation, XGBoost.cv)
- Pruning with LightGBM integration module
- Pruning with ChainerMN integration module
- Pruning with Tensorflow integration module
- Pruning with Keras integration module
- Pruning with MXNet integration module
- Pruning with PyTorch Ignite integration module
- Pruning with PyTorch Lightning integration module
- Pruning with FastAI integration module