forked from Carrion-lab/bacLIFE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile
368 lines (307 loc) · 17.9 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
GENUS, SPECIES, STR, REPLICON = glob_wildcards("data/{genus}_{species}_{str}_{replicon}.fna")
TEMP_DIR = 'intermediate_files/combined_proteins'
COMBINED_PROTEINS = os.path.join(TEMP_DIR,'combined_proteins.fasta')
COMPARISON_DIR = "intermediate_files/clustering"
CLUSTERING_BINARY_TABLE = 'intermediate_files/clustering/binary_matrix.txt'
CLUSTERING_FASTA = 'intermediate_files/clustering/protein_cluster'
configfile: "config.json"
THREADS = config['threads']
MCL_INFLATION = config['mcl_inflation_value']
LINCLUST_IDENTITY = config['linclust_identity']
GENBANKFILES, = glob_wildcards("intermediate_files/annot/{genome}.gbk")
NEWTAGFILE = "intermediate_files/combined_proteins/id2tags.tsv"
CLUSTERVSGENE = "intermediate_files/clusterVSgene.txt"
PROKKA_ANNOTATION = "intermediate_files/prokka_annotation.txt"
PFAM_ANNOTATION = "intermediate_files/pfam_out/PFAM_annotation.txt"
KEGG_ANNOTATION = "intermediate_files/kegg_annotation/KEGG_annotation_clean.faa.finalkegg"
KEGG_ANNOTATION_CLEAN = "intermediate_files/kegg_annotation/KEGG_annotation_clean2.faa.finalkegg"
KEGG_DESCRIPTIONS = "src/ko_description.txt"
COG_ANNOTATION = "intermediate_files/cog_annotation/COG_annotation_clean.faa.finalcog"
DBCAN_ANNOTATION = "intermediate_files/dbcan_annotation/DBCAN_annotation.txt"
EGGNOG_ANNOTATION = 'intermediate_files/eggnog_annotation/eggnog_annotation.emapper.annotations'
EGGNOG_DATA = 'intermediate_files/mapper_data'
HMM_ANNOTATIONS = "intermediate_files/hmm_annotations.txt"
MEGAMATRIX = "MEGAMATRIX.txt"
MAPPING_FILE = 'mapping_file.txt'
CORRECTED_MAPPING_FILE = 'corrected_mapping_file.txt'
BIGSCAPE = "intermediate_files/BiG-SCAPE/bigscape_output/index.html"
rule final:
input:
prokka = expand('intermediate_files/annot/{species}_{str}_{replicon}/{genus}_{species}_{str}_{replicon}.gbk', zip, genus = GENUS, species = SPECIES, str = STR, replicon = REPLICON),
extprot = expand('intermediate_files/annot/{species}_{str}_{replicon}/{genus}_{species}_{str}_{replicon}.ext_prot.faa', zip, genus = GENUS, species = SPECIES, str = STR, replicon = REPLICON),
protein_combine = 'intermediate_files/combined_proteins/combined_proteins.fasta.orig',
protein_rename = COMBINED_PROTEINS,
clustering_matrix = CLUSTERING_BINARY_TABLE,
clustering_fasta = CLUSTERING_FASTA,
extract_prokka = PROKKA_ANNOTATION,
pfam_annotation = PFAM_ANNOTATION,
kegg_clean_annotation = KEGG_ANNOTATION,
cog_clean_annotation = COG_ANNOTATION,
dbcan_annotation = DBCAN_ANNOTATION,
hmm_annotations = HMM_ANNOTATIONS,
megamatrix = MEGAMATRIX,
antismash = expand('intermediate_files/antismash/{genus}_{species}_{str}_{replicon}/{genus}_{species}_{str}_{replicon}.gbk', zip, genus = GENUS, species = SPECIES, str = STR, replicon = REPLICON),
bigscape_setup = "intermediate_files/BiG-SCAPE/bigscape.py",
bigscape = BIGSCAPE,
binary_table_GCF = 'intermediate_files/BiG-SCAPE/big_scape_binary_table.txt',
rename_matrix = 'MEGAMATRIX_renamed.txt',
phylophlan = "intermediate_files/phylophlan/output_phylophlan/RAxML_bestTree.input_refined.tre"
rule directories:
input:
expand("data/{genus}_{species}_{str}_{replicon}.fna", zip, genus = GENUS, species = SPECIES, str = STR, replicon = REPLICON)
params:
annot = "intermediate_files/annot/",
antismash = "intermediate_files/antismash/",
eggnog = "intermediate_files/eggnog_annotation/"
output:
chk = ".mkdir.chkpnt"
run:
shell("mkdir -p {params}")
shell("touch .mkdir.chkpnt")
rule Prokka_annotation:
input:
file = "data/{genus}_{species}_{str}_{replicon}.fna",
dir = rules.directories.output
output:
prokka = 'intermediate_files/annot/{species}_{str}_{replicon}/{genus}_{species}_{str}_{replicon}.gbk',
prokka2 = 'intermediate_files/annot/{species}_{str}_{replicon}/{genus}_{species}_{str}_{replicon}.faa'
message: 'executing prokka.'
params:
genus = "{genus}",
species = "{species}",
str = "{str}",
outdir = "intermediate_files/annot/{species}_{str}_{replicon}",
prefix = "{genus}_{species}_{str}_{replicon}"
threads: THREADS
priority: 100
run:
shell('prokka --force --outdir {params.outdir} --prefix {params.prefix} --locustag {params.str} --addgenes --increment 5 --centre NIOO-KNAW --genus {params.genus} --species {params.species} --str {params.str} --gcode 11 --cpus 5 --evalue 1e-03 --rfam {input.file}')
rule extract_proteins:
input: rules.Prokka_annotation.output.prokka
output:
faa = 'intermediate_files/annot/{species}_{str}_{replicon}/{genus}_{species}_{str}_{replicon}.ext_prot.faa',
tags = 'intermediate_files/annot/{species}_{str}_{replicon}/{genus}_{species}_{str}_{replicon}.ext_prot.faa.tags'
#log: 'log/{genus}_{species}_{str}_{replicon}_extract_proteins.log'
#benchmark: 'benchmarks/{genus}_{species}_{str}_{replicon}_extract_proteins.json'
message: 'Executing genbank_to_protein_fasta on the following files {input}.'
shell:
'python ./src/genbank_to_protein_fasta.py --genbank {input} --fasta {output.faa}'
rule protein_combine:
input:
#faa = expand('intermediate_files/annot/{genbankfile}.ext_prot.faa', genbankfile=GENBANKFILES),
#tags = expand('intermediate_files/annot/{genbankfile}.ext_prot.faa.tags', genbankfile=GENBANKFILES)
faa = expand(rules.extract_proteins.output.faa, zip, genus = GENUS, species = SPECIES, str = STR, replicon = REPLICON),
tags = expand(rules.extract_proteins.output.tags, zip, genus = GENUS, species = SPECIES, str = STR, replicon = REPLICON)
output:
orig = "%s.orig"%COMBINED_PROTEINS,
tags = "%s.tags"%COMBINED_PROTEINS
log: 'log/protein_combine.log'
run:
shell('cat {input.faa} > {output.orig}')
shell('cat {input.tags} > {output.tags}')
rule protein_rename:
input:
orig = rules.protein_combine.output.orig,
tags = rules.protein_combine.output.tags
output:
combined_proteins = COMBINED_PROTEINS,
newtagfile = NEWTAGFILE
run:
shell('python ./src/rename_proteins.py -f {input.orig} -t {input.tags} -o {output.combined_proteins} -n {output.newtagfile}')
rule clustering:
input: COMBINED_PROTEINS
output:
binary_table = CLUSTERING_BINARY_TABLE,
fasta = CLUSTERING_FASTA
params:
mmseq_identity = LINCLUST_IDENTITY,
mmseq_db = 'intermediate_files/clustering/mmseqDB',
mmseq_db_clu = 'intermediate_files/clustering/mmseqDB_clu',
mmseq_temp = 'intermediate_files/clustering/mmseqDB_temp',
mmseq_tsv = 'intermediate_files/clustering/mmseq_tsv.tsv',
mmseq_rep = 'intermediate_files/clustering/mmseq_clurep',
mmseq_fasta = 'intermediate_files/clustering/mmseq_clurep_fasta.fasta',
diamond_db = 'intermediate_files/clustering/diamond_db',
diamond_unaligned = 'intermediate_files/clustering/unaligned.fasta',
diamond_unaligned_headers = 'intermediate_files/clustering/unaligned_headers.txt',
diamond_results = 'intermediate_files/clustering/diamond_results',
diamond_results_filtered = 'intermediate_files/clustering/diamond_results_filtered',
diamond_results_clean = 'intermediate_files/clustering/diamond_results_clean',
mcl_data = 'intermediate_files/clustering/mcl_data.mci',
mcl_tab = 'intermediate_files/clustering/mcl_tab.tab',
mcl_infaltion = MCL_INFLATION,
mcl_clusters= 'intermediate_files/clustering/out.mcl_data.mci',
run:
#Extract gene lengths
shell("bioawk -c fastx '{{ print $name, length($seq) }}' < intermediate_files/combined_proteins/combined_proteins.fasta >intermediate_files/combined_proteins/length_genes.txt")
#Run mmseq2 clustering to 0.95
shell('mmseqs createdb {input} {params.mmseq_db}')
shell('mmseqs cluster {params.mmseq_db} {params.mmseq_db_clu} {params.mmseq_temp} --min-seq-id {params.mmseq_identity} --cov-mode 0 -c 0.8')
shell('mmseqs createtsv {params.mmseq_db} {params.mmseq_db} {params.mmseq_db_clu} {params.mmseq_tsv}')
#Extract mmseq2 representatives
shell('mmseqs createsubdb {params.mmseq_db_clu} {params.mmseq_db} {params.mmseq_rep}')
shell('mmseqs convert2fasta {params.mmseq_rep} {params.mmseq_fasta}')
#Run diamond
shell('diamond makedb --in {params.mmseq_fasta} -d {params.diamond_db}')
shell('diamond blastp -b 10 -p {THREADS} -c 1 -e 0.00001 --un {params.diamond_unaligned} -k 5000 -d {params.diamond_db} -q {params.mmseq_fasta} -o {params.diamond_results} --outfmt 6 qseqid sseqid pident bitscore')
shell("awk -F'\t' '$3>20' {params.diamond_results} > {params.diamond_results_filtered}")
shell("cut -f1,2,4 {params.diamond_results_filtered} > {params.diamond_results_clean}")
##Get unaaligned fasta headers
shell('grep "^>" {params.diamond_unaligned} > {params.diamond_unaligned_headers}')
### Run MCL
shell('mcxload -abc {params.diamond_results_clean} --stream-mirror -o {params.mcl_data} -write-tab {params.mcl_tab}')
shell('mcl {params.mcl_data} -I {params.mcl_infaltion} -use-tab {params.mcl_tab} -o {params.mcl_clusters}')
#shell('mv {params.mcl_clusters} intermediate_files/clustering/')
##Generate matrix
shell('Rscript src/MCL_merge.R {params.mmseq_tsv} {params.mcl_clusters} {params.diamond_unaligned_headers} {output.binary_table} {input} {output.fasta}')
rule extract_prokka:
input:
id2tag = rules.protein_rename.output.newtagfile,
faa = rules.protein_combine.output.orig
params:
headers = 'intermediate_files/prokka_headers.txt'
output:
"intermediate_files/prokka_annotation.txt"
run:
shell("grep '^>' {input.faa} > {params.headers}")
shell("Rscript ./src/extract_prokka.R {input.id2tag} {params.headers} {output} ")
rule pfam:
input:
rules.clustering.output.fasta
output:
pfam = PFAM_ANNOTATION
message: 'executing pfam.'
run:
shell('hmmsearch --tblout {output.pfam} --cpu {THREADS} -E 1e-5 ./intermediate_files/PFAM/Pfam-A.hmm {input}')
rule EGGNOG:
input:
rules.clustering.output.fasta
params:
data = EGGNOG_DATA
output:
EGGNOG_ANNOTATION
run:
shell('emapper.py -i {input} --cpu {THREADS} -o intermediate_files/eggnog_annotation/eggnog_annotation --data_dir {params.data} --pident 30 --query_cover 50 --subject_cover 50 --report_orthologs')
rule KEGG_COG:
input:
rules.EGGNOG.output
params:
kegg_descriptions = KEGG_DESCRIPTIONS,
cog_descriptions = "./src/cog_annotation_groups.csv",
output:
clean_annotation = 'intermediate_files/eggnog_annotation/eggnog_annotation.emapper.clean.annotations',
cog = COG_ANNOTATION,
kegg = KEGG_ANNOTATION,
kegg_clean = KEGG_ANNOTATION_CLEAN
run:
shell("sed '/^#/d' {input} > {output.clean_annotation}")
shell('Rscript src/COG_KEGG_annotations.R {output.clean_annotation} {params.cog_descriptions} {params.kegg_descriptions} {output.cog} {output.kegg}')
shell("sed '/^ko/d' {output.kegg} > {output.kegg_clean}")
rule dbCAN:
input:
rules.clustering.output.fasta
message: 'Retrieving dbCAN annotations.'
output:
dbcan = DBCAN_ANNOTATION
run:
shell('hmmsearch --tblout {output} -E 1e-5 --cpu {THREADS} ./intermediate_files/DBCAN/dbCAN-HMMdb-V9.txt {input}')
rule process_hmm_annotations:
input:
dbcan = rules.dbCAN.output.dbcan,
pfam = rules.pfam.output.pfam
params:
dbcan_family = "./src/CAZyDB.07302020.fam-activities.txt",
pfam_family = "./src/Pfam-A.clans.tsv"
output: HMM_ANNOTATIONS
run:
shell("Rscript ./src/Process_hmm_annotation.R {input.dbcan} {input.pfam} {params.dbcan_family} {params.pfam_family} {output}")
rule process_annotations:
input:
matrix = rules.clustering.output.binary_table,
cog = rules.KEGG_COG.output.cog,
kegg = rules.KEGG_COG.output.kegg_clean,
hmm_annotation = rules.process_hmm_annotations.output,
prokka = rules.extract_prokka.output
output:
MEGAMATRIX
run:
shell("set -euo pipefail; Rscript ./src/Process_annotations.R {input.matrix} {input.cog} {input.kegg} {input.hmm_annotation} {input.prokka} {output}")
rule antismash:
input:
rules.Prokka_annotation.output.prokka
output:
"intermediate_files/antismash/{genus}_{species}_{str}_{replicon}/{genus}_{species}_{str}_{replicon}.gbk"
params:
out_dir = 'intermediate_files/antismash/{genus}_{species}_{str}_{replicon}/',
threads = THREADS
shell:
'set +u; source /opt/miniconda3/etc/profile.d/conda.sh; conda activate antismash_bacLIFE; set -u; antismash --cb-general --cb-knownclusters --cb-subclusters --output-dir {params.out_dir} -c 5 --asf --pfam2go --genefinding-tool prodigal --smcog-trees {input}'
rule bigscape_exe:
input:
antismash = expand(rules.antismash.output, zip, genus = GENUS, species = SPECIES, str = STR, replicon = REPLICON),
pfam_hmm = 'intermediate_files/PFAM/Pfam-A.hmm'
output:
html = 'intermediate_files/BiG-SCAPE/bigscape_output/index.html',
clustering = 'intermediate_files/BiG-SCAPE/bigscape_output/network_files/hybrids_glocal/mix/mix_clustering_c0.70.tsv',
network = 'intermediate_files/BiG-SCAPE/bigscape_output/network_files/hybrids_glocal/mix/mix_c0.70.network',
annotations = 'intermediate_files/BiG-SCAPE/bigscape_output/network_files/hybrids_glocal/Network_Annotations_Full.tsv'
threads: THREADS
params:
outdir = 'intermediate_files/BiG-SCAPE/bigscape_output/',
threads = THREADS,
indir = rules.directories.params.antismash
run:
shell("set +u; source /opt/miniconda3/etc/profile.d/conda.sh; conda activate bigscape_bacLIFE; set -u; python ./intermediate_files/BiG-SCAPE/bigscape.py -i {params.indir} -o {params.outdir} --pfam_dir intermediate_files/PFAM/ --mode glocal --mibig --cutoffs 0.3 0.7 --include_singletons --cores {params.threads} --mix")
shell("rm -r intermediate_files/BiG-SCAPE/bigscape_output/network_files/hybrids_glocal")
shell("mv intermediate_files/BiG-SCAPE/bigscape_output/network_files/*hybrids_glocal intermediate_files/BiG-SCAPE/bigscape_output/network_files/hybrids_glocal")
rule extract_binary_table_GCF:
input:
clustering = rules.bigscape_exe.output.clustering,
network = rules.bigscape_exe.output.network,
annotations = rules.bigscape_exe.output.annotations
params:
output_code_I_network = "intermediate_files/BiG-SCAPE/mix_filtered.network",
output_code_I_annotations = 'intermediate_files/BiG-SCAPE/GCF_annotation.txt',
output_code_II = 'intermediate_files/BiG-SCAPE/abs_pres_table.csv',
names = 'names_equivalence.txt'
output:
filtered_network = "intermediate_files/BiG-SCAPE/mix_filtered.network",
annotations = 'intermediate_files/BiG-SCAPE/annotation.txt',
merged_annotations = 'intermediate_files/BiG-SCAPE/GCF_annotation.txt',
abs_presence_list = 'intermediate_files/BiG-SCAPE/abs_pres_table.csv',
binary_matrix = 'intermediate_files/BiG-SCAPE/big_scape_binary_table.txt'
run:
shell("Rscript src/I-BIGSCAPE_revision.R {input.clustering} {input.network} {input.annotations} intermediate_files/BiG-SCAPE/mix_filtered.network intermediate_files/BiG-SCAPE/GCF_annotation.txt {output.annotations} {params.names}")
shell("python src/II_Absence_Presence.py intermediate_files/BiG-SCAPE/GCF_annotation.txt intermediate_files/BiG-SCAPE/abs_pres_table.csv ")
shell("Rscript src/III_Absence_Presence_GCF.R intermediate_files/BiG-SCAPE/abs_pres_table.csv {output.binary_matrix}")
rule rename_MEGAMATRIX:
input:
genes = rules.process_annotations.output,
BGCs = rules.extract_binary_table_GCF.output.binary_matrix
output:
genes = 'MEGAMATRIX_renamed.txt',
BGCs = 'intermediate_files/BiG-SCAPE/big_scape_binary_table_renamed.txt',
mapping_file = 'mapping_file.txt'
params:
'names_equivalence.txt'
run:
shell('Rscript src/rename_MEGAMATRIX.R {input.genes} {input.BGCs} {params} {output.genes} {output.BGCs} {output.mapping_file}')
rule phylophlan:
input:
config = "src/supermatrix_aa.cfg",
to_order= rules.extract_binary_table_GCF.output.binary_matrix
params:
database = config['phylo_database'],
in_file = "intermediate_files/phylophlan/input"
output:
out_tree = "intermediate_files/phylophlan/output_phylophlan/RAxML_bestTree.input_refined.tre",
#out_dir = "intermediate_files/phylophlan/output_phylophlan"
log: "log/phylophlan.log"
run:
shell("mkdir -p intermediate_files/phylophlan/")
shell("mkdir -p intermediate_files/phylophlan/input/")
shell("mkdir -p intermediate_files/phylophlan/output_phylophlan/")
shell("cp -r intermediate_files/annot/*/*O.faa intermediate_files/phylophlan/input/")
shell("phylophlan -i {params.in_file} -d {params.database} --diversity low -f {input.config} --nproc {THREADS} --output_folder intermediate_files/phylophlan/output_phylophlan/ --databases_folder src/phylophlan_db")
shell("mv intermediate_files/phylophlan/output_phylophlan/input_{params.database}/* intermediate_files/phylophlan/output_phylophlan/")
shell("rm -r intermediate_files/phylophlan/output_phylophlan/input_{params.database}")