-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.py
executable file
·754 lines (585 loc) · 24.6 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Part of Odoo. See LICENSE file for full copyright and licensing details.
import operator
import math
class graph(object):
def __init__(self, nodes, transitions, no_ancester=None):
"""Initialize graph's object
@param nodes list of ids of nodes in the graph
@param transitions list of edges in the graph in the form (source_node, destination_node)
@param no_ancester list of nodes with no incoming edges
"""
self.nodes = nodes or []
self.edges = transitions or []
self.no_ancester = no_ancester or {}
trans = {}
for t in transitions:
trans.setdefault(t[0], [])
trans[t[0]].append(t[1])
self.transitions = trans
self.result = {}
def init_rank(self):
"""Computes rank of the nodes of the graph by finding initial feasible tree
"""
self.edge_wt = {}
for link in self.links:
self.edge_wt[link] = self.result[link[1]]['x'] - self.result[link[0]]['x']
tot_node = len(self.partial_order)
#do until all the nodes in the component are searched
while self.tight_tree()<tot_node:
list_node = []
list_edge = []
for node in self.nodes:
if node not in self.reachable_nodes:
list_node.append(node)
for edge in self.edge_wt:
if edge not in self.tree_edges:
list_edge.append(edge)
slack = 100
for edge in list_edge:
if ((edge[0] in self.reachable_nodes and edge[1] not in self.reachable_nodes) or
(edge[1] in self.reachable_nodes and edge[0] not in self.reachable_nodes)):
if slack > self.edge_wt[edge]-1:
slack = self.edge_wt[edge]-1
new_edge = edge
if new_edge[0] not in self.reachable_nodes:
delta = -(self.edge_wt[new_edge]-1)
else:
delta = self.edge_wt[new_edge]-1
for node in self.result:
if node in self.reachable_nodes:
self.result[node]['x'] += delta
for edge in self.edge_wt:
self.edge_wt[edge] = self.result[edge[1]]['x'] - self.result[edge[0]]['x']
self.init_cutvalues()
def tight_tree(self):
self.reachable_nodes = []
self.tree_edges = []
self.reachable_node(self.start)
return len(self.reachable_nodes)
def reachable_node(self, node):
"""Find the nodes of the graph which are only 1 rank apart from each other
"""
if node not in self.reachable_nodes:
self.reachable_nodes.append(node)
for edge in self.edge_wt:
if edge[0]==node:
if self.edge_wt[edge]==1:
self.tree_edges.append(edge)
if edge[1] not in self.reachable_nodes:
self.reachable_nodes.append(edge[1])
self.reachable_node(edge[1])
def init_cutvalues(self):
"""Initailize cut values of edges of the feasible tree.
Edges with negative cut-values are removed from the tree to optimize rank assignment
"""
self.cut_edges = {}
self.head_nodes = []
i=0
for edge in self.tree_edges:
self.head_nodes = []
rest_edges = []
rest_edges += self.tree_edges
del rest_edges[i]
self.head_component(self.start, rest_edges)
i+=1
positive = 0
negative = 0
for source_node in self.transitions:
if source_node in self.head_nodes:
for dest_node in self.transitions[source_node]:
if dest_node not in self.head_nodes:
negative+=1
else:
for dest_node in self.transitions[source_node]:
if dest_node in self.head_nodes:
positive+=1
self.cut_edges[edge] = positive - negative
def head_component(self, node, rest_edges):
"""Find nodes which are reachable from the starting node, after removing an edge
"""
if node not in self.head_nodes:
self.head_nodes.append(node)
for edge in rest_edges:
if edge[0]==node:
self.head_component(edge[1],rest_edges)
def process_ranking(self, node, level=0):
"""Computes initial feasible ranking after making graph acyclic with depth-first search
"""
if node not in self.result:
self.result[node] = {'y': None, 'x':level, 'mark':0}
else:
if level > self.result[node]['x']:
self.result[node]['x'] = level
if self.result[node]['mark']==0:
self.result[node]['mark'] = 1
for sec_end in self.transitions.get(node, []):
self.process_ranking(sec_end, level+1)
def make_acyclic(self, parent, node, level, tree):
"""Computes Partial-order of the nodes with depth-first search
"""
if node not in self.partial_order:
self.partial_order[node] = {'level':level, 'mark':0}
if parent:
tree.append((parent, node))
if self.partial_order[node]['mark']==0:
self.partial_order[node]['mark'] = 1
for sec_end in self.transitions.get(node, []):
self.links.append((node, sec_end))
self.make_acyclic(node, sec_end, level+1, tree)
return tree
def rev_edges(self, tree):
"""reverse the direction of the edges whose source-node-partail_order> destination-node-partail_order
to make the graph acyclic
"""
Is_Cyclic = False
i=0
for link in self.links:
src = link[0]
des = link[1]
edge_len = self.partial_order[des]['level'] - self.partial_order[src]['level']
if edge_len < 0:
del self.links[i]
self.links.insert(i, (des, src))
self.transitions[src].remove(des)
self.transitions.setdefault(des, []).append(src)
Is_Cyclic = True
elif math.fabs(edge_len) > 1:
Is_Cyclic = True
i += 1
return Is_Cyclic
def exchange(self, e, f):
"""Exchange edges to make feasible-tree optimized
:param e: edge with negative cut-value
:param f: new edge with minimum slack-value
"""
del self.tree_edges[self.tree_edges.index(e)]
self.tree_edges.append(f)
self.init_cutvalues()
def enter_edge(self, edge):
"""Finds a new_edge with minimum slack value to replace an edge with negative cut-value
@param edge edge with negative cut-value
"""
self.head_nodes = []
rest_edges = []
rest_edges += self.tree_edges
del rest_edges[rest_edges.index(edge)]
self.head_component(self.start, rest_edges)
if edge[1] in self.head_nodes:
l = []
for node in self.result:
if node not in self.head_nodes:
l.append(node)
self.head_nodes = l
slack = 100
new_edge = edge
for source_node in self.transitions:
if source_node in self.head_nodes:
for dest_node in self.transitions[source_node]:
if dest_node not in self.head_nodes:
if slack>(self.edge_wt[edge]-1):
slack = self.edge_wt[edge]-1
new_edge = (source_node, dest_node)
return new_edge
def leave_edge(self):
"""Returns the edge with negative cut_value(if exists)
"""
if self.critical_edges:
for edge in self.critical_edges:
self.cut_edges[edge] = 0
for edge in self.cut_edges:
if self.cut_edges[edge]<0:
return edge
return None
def finalize_rank(self, node, level):
self.result[node]['x'] = level
for destination in self.optimal_edges.get(node, []):
self.finalize_rank(destination, level+1)
def normalize(self):
"""The ranks are normalized by setting the least rank to zero.
"""
least_rank = min(map(lambda x: x['x'], self.result.values()))
if least_rank!=0:
for node in self.result:
self.result[node]['x']-=least_rank
def make_chain(self):
"""Edges between nodes more than one rank apart are replaced by chains of unit
length edges between temporary nodes.
"""
for edge in self.edge_wt:
if self.edge_wt[edge]>1:
self.transitions[edge[0]].remove(edge[1])
start = self.result[edge[0]]['x']
end = self.result[edge[1]]['x']
for rank in range(start+1, end):
if not self.result.get((rank, 'temp'), False):
self.result[(rank, 'temp')] = {'y': None, 'x': rank, 'mark': 0}
for rank in range(start, end):
if start==rank:
self.transitions[edge[0]].append((rank+1, 'temp'))
elif rank==end-1:
self.transitions.setdefault((rank, 'temp'), []).append(edge[1])
else:
self.transitions.setdefault((rank, 'temp'), []).append((rank+1, 'temp'))
def init_order(self, node, level):
"""Initialize orders the nodes in each rank with depth-first search
"""
if not self.result[node]['y']:
self.result[node]['y'] = self.order[level]
self.order[level] += 1
for sec_end in self.transitions.get(node, []):
if node!=sec_end:
self.init_order(sec_end, self.result[sec_end]['x'])
def order_heuristic(self):
for i in range(12):
self.wmedian()
def wmedian(self):
"""Applies median heuristic to find optimzed order of the nodes with in their ranks
"""
for level in self.levels:
node_median = []
nodes = self.levels[level]
for node in nodes:
node_median.append((node, self.median_value(node, level-1)))
sort_list = sorted(node_median, key=operator.itemgetter(1))
new_list = [tuple[0] for tuple in sort_list]
self.levels[level] = new_list
order = 0
for node in nodes:
self.result[node]['y'] = order
order +=1
def median_value(self, node, adj_rank):
"""Returns median value of a vertex , defined as the median position of the adjacent vertices
@param node node to process
@param adj_rank rank 1 less than the node's rank
"""
adj_nodes = self.adj_position(node, adj_rank)
l = len(adj_nodes)
m = l/2
if l==0:
return -1.0
elif l%2 == 1:
return adj_nodes[m]#median of the middle element
elif l==2:
return (adj_nodes[0]+adj_nodes[1])/2
else:
left = adj_nodes[m-1] - adj_nodes[0]
right = adj_nodes[l-1] - adj_nodes[m]
return ((adj_nodes[m-1]*right) + (adj_nodes[m]*left))/(left+right)
def adj_position(self, node, adj_rank):
"""Returns list of the present positions of the nodes adjacent to node in the given adjacent rank.
@param node node to process
@param adj_rank rank 1 less than the node's rank
"""
pre_level_nodes = self.levels.get(adj_rank, [])
adj_nodes = []
if pre_level_nodes:
for src in pre_level_nodes:
if self.transitions.get(src) and node in self.transitions[src]:
adj_nodes.append(self.result[src]['y'])
return adj_nodes
def preprocess_order(self):
levels = {}
for r in self.partial_order:
l = self.result[r]['x']
levels.setdefault(l,[])
levels[l].append(r)
self.levels = levels
def graph_order(self):
"""Finds actual-order of the nodes with respect to maximum number of nodes in a rank in component
"""
mid_pos = 0.0
max_level = max(map(lambda x: len(x), self.levels.values()))
for level in self.levels:
if level:
no = len(self.levels[level])
factor = (max_level - no) * 0.10
list = self.levels[level]
list.reverse()
if no%2==0:
first_half = list[no/2:]
factor = -factor
else:
first_half = list[no/2+1:]
if max_level==1:#for the case when horizontal graph is there
self.result[list[no/2]]['y'] = mid_pos + (self.result[list[no/2]]['x']%2 * 0.5)
else:
self.result[list[no/2]]['y'] = mid_pos + factor
last_half = list[:no/2]
i=1
for node in first_half:
self.result[node]['y'] = mid_pos - (i + factor)
i += 1
i=1
for node in last_half:
self.result[node]['y'] = mid_pos + (i + factor)
i += 1
else:
self.max_order += max_level+1
mid_pos = self.result[self.start]['y']
def tree_order(self, node, last=0):
mid_pos = self.result[node]['y']
l = self.transitions.get(node, [])
l.reverse()
no = len(l)
rest = no%2
first_half = l[no/2+rest:]
last_half = l[:no/2]
for i, child in enumerate(first_half):
self.result[child]['y'] = mid_pos - (i+1 - (0 if rest else 0.5))
if self.transitions.get(child, False):
if last:
self.result[child]['y'] = last + len(self.transitions[child])/2 + 1
last = self.tree_order(child, last)
if rest:
mid_node = l[no/2]
self.result[mid_node]['y'] = mid_pos
if self.transitions.get(mid_node, False):
if last:
self.result[mid_node]['y'] = last + len(self.transitions[mid_node])/2 + 1
if node!=mid_node:
last = self.tree_order(mid_node)
else:
if last:
self.result[mid_node]['y'] = last + 1
self.result[node]['y'] = self.result[mid_node]['y']
mid_pos = self.result[node]['y']
i=1
last_child = None
for child in last_half:
self.result[child]['y'] = mid_pos + (i - (0 if rest else 0.5))
last_child = child
i += 1
if self.transitions.get(child, False):
if last:
self.result[child]['y'] = last + len(self.transitions[child])/2 + 1
if node!=child:
last = self.tree_order(child, last)
if last_child:
last = self.result[last_child]['y']
return last
def process_order(self):
"""Finds actual-order of the nodes with respect to maximum number of nodes in a rank in component
"""
if self.Is_Cyclic:
max_level = max(map(lambda x: len(x), self.levels.values()))
if max_level%2:
self.result[self.start]['y'] = (max_level+1)/2 + self.max_order + (self.max_order and 1)
else:
self.result[self.start]['y'] = max_level /2 + self.max_order + (self.max_order and 1)
self.graph_order()
else:
self.result[self.start]['y'] = 0
self.tree_order(self.start, 0)
min_order = math.fabs(min(map(lambda x: x['y'], self.result.values())))
index = self.start_nodes.index(self.start)
same = False
roots = []
if index>0:
for start in self.start_nodes[:index]:
same = True
for edge in self.tree_list[start][1:]:
if edge in self.tree_list[self.start]:
continue
else:
same = False
break
if same:
roots.append(start)
if roots:
min_order += self.max_order
else:
min_order += self.max_order + 1
for level in self.levels:
for node in self.levels[level]:
self.result[node]['y'] += min_order
if roots:
roots.append(self.start)
one_level_el = self.tree_list[self.start][0][1]
base = self.result[one_level_el]['y']# * 2 / (index + 2)
no = len(roots)
first_half = roots[:no/2]
if no%2==0:
last_half = roots[no/2:]
else:
last_half = roots[no/2+1:]
factor = -math.floor(no/2)
for start in first_half:
self.result[start]['y'] = base + factor
factor += 1
if no%2:
self.result[roots[no/2]]['y'] = base + factor
factor +=1
for start in last_half:
self.result[start]['y'] = base + factor
factor += 1
self.max_order = max(map(lambda x: x['y'], self.result.values()))
def find_starts(self):
"""Finds other start nodes of the graph in the case when graph is disconneted
"""
rem_nodes = []
for node in self.nodes:
if not self.partial_order.get(node):
rem_nodes.append(node)
cnt = 0
while True:
if len(rem_nodes)==1:
self.start_nodes.append(rem_nodes[0])
break
else:
count = 0
new_start = rem_nodes[0]
largest_tree = []
for node in rem_nodes:
self.partial_order = {}
tree = self.make_acyclic(None, node, 0, [])
if len(tree)+1 > count:
count = len(tree) + 1
new_start = node
largest_tree = tree
else:
if not largest_tree:
new_start = rem_nodes[0]
rem_nodes.remove(new_start)
self.start_nodes.append(new_start)
for edge in largest_tree:
if edge[0] in rem_nodes:
rem_nodes.remove(edge[0])
if edge[1] in rem_nodes:
rem_nodes.remove(edge[1])
if not rem_nodes:
break
def rank(self):
"""Finds the optimized rank of the nodes using Network-simplex algorithm
"""
self.levels = {}
self.critical_edges = []
self.partial_order = {}
self.links = []
self.Is_Cyclic = False
self.tree_list[self.start] = self.make_acyclic(None, self.start, 0, [])
self.Is_Cyclic = self.rev_edges(self.tree_list[self.start])
self.process_ranking(self.start)
self.init_rank()
#make cut values of all tree edges to 0 to optimize feasible tree
e = self.leave_edge()
while e :
f = self.enter_edge(e)
if e==f:
self.critical_edges.append(e)
else:
self.exchange(e,f)
e = self.leave_edge()
#finalize rank using optimum feasible tree
# self.optimal_edges = {}
# for edge in self.tree_edges:
# source = self.optimal_edges.setdefault(edge[0], [])
# source.append(edge[1])
# self.finalize_rank(self.start, 0)
#normalization
self.normalize()
for edge in self.edge_wt:
self.edge_wt[edge] = self.result[edge[1]]['x'] - self.result[edge[0]]['x']
def order_in_rank(self):
"""Finds optimized order of the nodes within their ranks using median heuristic
"""
self.make_chain()
self.preprocess_order()
self.order = {}
max_rank = max(map(lambda x: x, self.levels.keys()))
for i in range(max_rank+1):
self.order[i] = 0
self.init_order(self.start, self.result[self.start]['x'])
for level in self.levels:
self.levels[level].sort(lambda x, y: cmp(self.result[x]['y'], self.result[y]['y']))
self.order_heuristic()
self.process_order()
def process(self, starting_node):
"""Process the graph to find ranks and order of the nodes
@param starting_node node from where to start the graph search
"""
self.start_nodes = starting_node or []
self.partial_order = {}
self.links = []
self.tree_list = {}
if self.nodes:
if self.start_nodes:
#add dummy edges to the nodes which does not have any incoming edges
tree = self.make_acyclic(None, self.start_nodes[0], 0, [])
for node in self.no_ancester:
for sec_node in self.transitions.get(node, []):
if sec_node in self.partial_order.keys():
self.transitions[self.start_nodes[0]].append(node)
break
self.partial_order = {}
tree = self.make_acyclic(None, self.start_nodes[0], 0, [])
# if graph is disconnected or no start-node is given
#than to find starting_node for each component of the node
if len(self.nodes) > len(self.partial_order):
self.find_starts()
self.max_order = 0
#for each component of the graph find ranks and order of the nodes
for s in self.start_nodes:
self.start = s
self.rank() # First step:Netwoek simplex algorithm
self.order_in_rank() #Second step: ordering nodes within ranks
def __str__(self):
result = ''
for l in self.levels:
result += 'PosY: ' + str(l) + '\n'
for node in self.levels[l]:
result += '\tPosX: '+ str(self.result[node]['y']) + ' - Node:' + str(node) + "\n"
return result
def scale(self, maxx, maxy, nwidth=0, nheight=0, margin=20):
"""Computes actual co-ordiantes of the nodes
"""
#for flat edges ie. source an destination nodes are on the same rank
for src in self.transitions:
for des in self.transitions[src]:
if self.result[des]['x'] - self.result[src]['x'] == 0:
self.result[src]['x'] += 0.08
self.result[des]['x'] -= 0.08
factorX = maxx + nheight
factorY = maxy + nwidth
for node in self.result:
self.result[node]['y'] = (self.result[node]['y']) * factorX + margin
self.result[node]['x'] = (self.result[node]['x']) * factorY + margin
def result_get(self):
return self.result
if __name__=='__main__':
starting_node = ['profile'] # put here nodes with flow_start=True
nodes = ['project','account','hr','base','product','mrp','test','profile']
transitions = [
('profile','mrp'),
('mrp','project'),
('project','product'),
('mrp','hr'),
('mrp','test'),
('project','account'),
('project','hr'),
('product','base'),
('account','product'),
('account','test'),
('account','base'),
('hr','base'),
('test','base')
]
radius = 20
g = graph(nodes, transitions)
g.process(starting_node)
g.scale(radius*3,radius*3, radius, radius)
from PIL import Image
from PIL import ImageDraw
img = Image.new("RGB", (800, 600), "#ffffff")
draw = ImageDraw.Draw(img)
result = g.result_get()
node_res = {}
for node in nodes:
node_res[node] = result[node]
for name,node in node_res.items():
draw.arc( (int(node['y']-radius), int(node['x']-radius),int(node['y']+radius), int(node['x']+radius) ), 0, 360, (128,128,128))
draw.text( (int(node['y']), int(node['x'])), str(name), (128,128,128))
for t in transitions:
draw.line( (int(node_res[t[0]]['y']), int(node_res[t[0]]['x']),int(node_res[t[1]]['y']),int(node_res[t[1]]['x'])),(128,128,128) )
img.save("graph.png", "PNG")