https://github.com/pierre-chaville/automlk
https://github.com/keon/awesome-nlp
https://www.twosigma.com/insights/icml-2017-a-review-of-deep-learning-paperstalks-and-tutorials
https://github.com/kaz-Anova/StackNet
Richard Sutton - RL - an introduction
https://blog.jupyter.org/authoring-custom-jupyter-widgets-2884a462e724
https://arxiv.org/pdf/1802.10567.pdf
https://engineering.upside.com/a-beginners-guide-to-optimizing-pandas-code-for-speed-c09ef2c6a4d6
https://tryolabs.com/blog/2017/12/12/deep-learning-for-nlp-advancements-and-trends-in-2017/
https://www.twosigma.com/insights/icml-2017-a-review-of-deep-learning-paperstalks-and-tutorials
https://www.linkedin.com/pulse/deep-learning-ai-future-fabio-ciucci/
https://www.kdnuggets.com/2015/04/model-interpretability-neural-networks-deep-learning.html
https://people.csail.mit.edu/taolei/papers/emnlp16_rationale.pdf
https://www.alexirpan.com/2018/02/14/rl-hard.html
http://www.argmin.net/2018/01/25/optics/
https://www.quantamagazine.org/job-one-for-quantum-computers-boost-artificial-intelligence-20180129/
https://blog.openai.com/robust-adversarial-inputs/
https://blog.keras.io/the-limitations-of-deep-learning.html
https://blog.keras.io/the-future-of-deep-learning.html
https://berkeley-deep-learning.github.io/
https://arxiv.org/pdf/1710.04087.pdf
https://arxiv.org/pdf/1711.00043.pdf
https://arxiv.org/pdf/1711.00436.pdf
https://arxiv.org/pdf/1611.03530.pdf
https://arxiv.org/pdf/1403.2229.pdf
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://rll.berkeley.edu/deeprlcourse/
http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf
https://www.quantamagazine.org/new-theory-cracks-open-the-black-box-of-deep-learning-20170921/
https://arxiv.org/abs/1709.03856 - https://github.com/facebookresearch/Starspace
https://arxiv.org/abs/1406.2673
http://www.symmetrymagazine.org/article/neural-networks-meet-space
https://sites.google.com/site/vianneyperchet/mva
https://www.amazon.com/Nicholas-J.-Higham/e/B001JS5MHS/ref=dp_byline_cont_book_1