Skip to content

Latest commit

 

History

History

cog

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

InstantID Cog Model

Replicate

Overview

This repository contains the implementation of InstantID as a Cog model.

Using Cog allows any users with a GPU to run the model locally easily, without the hassle of downloading weights, installing libraries, or managing CUDA versions. Everything just works.

Development

To push your own fork of InstantID to Replicate, follow the Model Pushing Guide.

Basic Usage

To make predictions using the model, execute the following command from the root of this project:

cog predict \
-i image=@examples/sam_resize.png \
-i prompt="analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality" \
-i negative_prompt="nsfw" \
-i width=680 \
-i height=680 \
-i ip_adapter_scale=0.8 \
-i controlnet_conditioning_scale=0.8 \
-i num_inference_steps=30 \
-i guidance_scale=5

Input

Sample Input Image

Output

Sample Output Image

Input Parameters

The following table provides details about each input parameter for the predict function:

Parameter Description Default Value Range
image Input image A path to the input image file Path string
prompt Input prompt "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, ... " String
negative_prompt Input Negative Prompt (empty string) String
width Width of output image 640 512 - 2048
height Height of output image 640 512 - 2048
ip_adapter_scale Scale for IP adapter 0.8 0.0 - 1.0
controlnet_conditioning_scale Scale for ControlNet conditioning 0.8 0.0 - 1.0
num_inference_steps Number of denoising steps 30 1 - 500
guidance_scale Scale for classifier-free guidance 5 1 - 50

This table provides a quick reference to understand and modify the inputs for generating predictions using the model.