This repository contains the implementation of InstantID as a Cog model.
Using Cog allows any users with a GPU to run the model locally easily, without the hassle of downloading weights, installing libraries, or managing CUDA versions. Everything just works.
To push your own fork of InstantID to Replicate, follow the Model Pushing Guide.
To make predictions using the model, execute the following command from the root of this project:
cog predict \
-i image=@examples/sam_resize.png \
-i prompt="analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality" \
-i negative_prompt="nsfw" \
-i width=680 \
-i height=680 \
-i ip_adapter_scale=0.8 \
-i controlnet_conditioning_scale=0.8 \
-i num_inference_steps=30 \
-i guidance_scale=5
Input |
Output |
The following table provides details about each input parameter for the predict
function:
Parameter | Description | Default Value | Range |
---|---|---|---|
image |
Input image | A path to the input image file | Path string |
prompt |
Input prompt | "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, ... " | String |
negative_prompt |
Input Negative Prompt | (empty string) | String |
width |
Width of output image | 640 | 512 - 2048 |
height |
Height of output image | 640 | 512 - 2048 |
ip_adapter_scale |
Scale for IP adapter | 0.8 | 0.0 - 1.0 |
controlnet_conditioning_scale |
Scale for ControlNet conditioning | 0.8 | 0.0 - 1.0 |
num_inference_steps |
Number of denoising steps | 30 | 1 - 500 |
guidance_scale |
Scale for classifier-free guidance | 5 | 1 - 50 |
This table provides a quick reference to understand and modify the inputs for generating predictions using the model.