
Optimization for Machine Learning
CS-439

Lecture 5: Stochastic Gradient Descent and Non-convex optimization

Nicolas Flammarion

EPFL – github.com/epfml/OptML_course

March 20, 2020

github.com/epfml/OptML_course


Chapter 5

Stochastic Gradient Descent

EPFL Optimization for Machine Learning CS-439 2/31



Stochastic gradient descent

Many objective functions are sum structured:

f(x) =
1

n

n∑
i=1

fi(x).

Example: fi is the cost function of the i-th observation, taken from a training set of n
observation.

Evaluating ∇f(x) of a sum-structured function is expensive (sum of n gradients).

EPFL Optimization for Machine Learning CS-439 3/31



Stochastic gradient descent: the algorithm

choose x0 ∈ Rd.

sample i ∈ [n] uniformly at random

xt+1 := xt − γt∇fi(xt).

for times t = 0, 1, . . . , and stepsizes γt ≥ 0.

Only update with the gradient of fi instead of the full gradient!

Iteration is n times cheaper than in full gradient descent.

The vector gt := ∇fi(xt) is called a stochastic gradient.

gt is a vector of d random variables, but we will also simply call this a random variable.

EPFL Optimization for Machine Learning CS-439 4/31



Unbiasedness

Can’t use convexity
f(xt)− f(x?) ≤ g>t (xt − x?)

on top of the vanilla analysis, as this may hold or not hold, depending on how the
stochastic gradient gt turns out.

We will show (and exploit): the inequality holds in expectation.

Fot this, we use that by definition, gt is an unbiased estimate of ∇f(xt):

E
[
gt
∣∣xt = x

]
=

1

n

n∑
i=1

∇fi(x) = ∇f(x), x ∈ Rd.

EPFL Optimization for Machine Learning CS-439 5/31



The inequality f(xt)− f(x?) ≤ g>t (xt − x?) holds in expectation
For any fixed x, linearity of conditional expectations (Exercise 32) yields

E
[
g>t (x− x?)

∣∣xt = x
]
= E

[
gt
∣∣xt = x

]>
(x− x?) = ∇f(x)>(x− x?).

Event {xt = x} can occur only for x in some finite set X (xt is determined by the
choices of indices in all iterations so far). Partition Theorem (Exercise 32):

E
[
g>t (xt − x?)

]
=

∑
x∈X

E
[
g>t (x− x?)

∣∣xt = x
]
prob(xt = x)

=
∑
x∈X
∇f(x)>(x− x?) prob(xt = x) = E

[
∇f(xt)

>(xt − x?)
]
.

Hence, ↓ convexity

E
[
g>t (xt − x?)

]
= E

[
∇f(xt)

>(xt − x?)
]
≥ E

[
f(xt)− f(x?)

]
.

EPFL Optimization for Machine Learning CS-439 6/31



Bounded stochastic gradients: O(1/ε2) steps
Theorem

Let f : Rd → R be convex and differentiable, x? a global minimum; furthermore,
suppose that ‖x0 − x?‖ ≤ R, and that E

[
‖gt‖2

]
≤ B2 for all t. Choosing the constant

stepsize

γ :=
R

B
√
T

stochastic gradient descent yields

1

T

T−1∑
t=0

E
[
f(xt)

]
− f(x?) ≤ RB√

T
.

Same procedure as every week. . . except

I we assume bounded stochastic gradients in expectation;
I error bound holds in expectation.

EPFL Optimization for Machine Learning CS-439 7/31



Bounded stochastic gradients: O(1/ε2) steps II
Proof.

Vanilla analysis (this time, gt is the stochastic gradient):

T−1∑
t=0

g>t (xt − x?) ≤ γ

2

T−1∑
t=0

‖gt‖2 +
1

2γ
‖x0 − x?‖2.

Taking expectations and using “convexity in expectation”:

T−1∑
t=0

E
[
f(xt)− f(x?)

]
≤

T−1∑
t=0

E
[
g>t (xt − x?)

]
≤ γ

2

T−1∑
t=0

E
[
‖gt‖2

]
+

1

2γ
‖x0 − x?‖2

≤ γ

2
B2T +

1

2γ
R2.

Result follows as every week (optimize γ) . . .

EPFL Optimization for Machine Learning CS-439 8/31



Convergence rate comparison: SGD vs GD
Classic GD: For vanilla analysis, we assumed that ‖∇f(x)‖2 ≤ B2

GD for all x ∈ Rd,
where BGD was a constant. So for sum-objective:∥∥∥ 1

n

∑
i

∇fi(x)
∥∥∥2 ≤ B2

GD ∀x

SGD: Assuming same for the expected squared norms of our stochastic gradients, now
called B2

SGD.
1

n

∑
i

∥∥∇fi(x)∥∥2 ≤ B2
SGD ∀x

So by Jensen’s inequality for ‖.‖2

I B2
GD ≈

∥∥∥ 1
n

∑
i∇fi(x)

∥∥∥2 ≤ 1
n

∑
i

∥∥∇fi(x)∥∥2 ≈ B2
SGD

I B2
GD can be smaller than B2

SGD, but often comparable.
Very similar if larger mini-batches are used.

EPFL Optimization for Machine Learning CS-439 9/31



Tame strong convexity: O(1/ε) steps

Theorem

Let f : Rd → R be differentiable and strongly convex with parameter µ > 0; let x? be
the unique global minimum of f . With decreasing step size

γt :=
2

µ(t+ 1)

stochastic gradient descent yields

E
[
f

(
2

T (T + 1)

T∑
t=1

t · xt

)
− f(x?)

]
≤ 2B2

µ(T + 1)
,

where B2 := maxTt=1E
[
‖gt‖2

]
.

Almost same result as for subgradient descent, but in expectation.

EPFL Optimization for Machine Learning CS-439 10/31



Tame strong convexity: O(1/ε) steps II

Proof.

Take expectations over vanilla analysis, before summing up (with varying stepsize γt):

E
[
g>t (xt − x?)

]
=
γt
2
E
[
‖gt‖2

]
+

1

2γt

(
E
[
‖xt − x?‖2

]
− E

[
‖xt+1 − x?‖2

])
.

“Strong convexity in expectation”:

E
[
g>t (xt − x?)

]
= E

[
∇f(xt)

>(xt − x?)
]
≥ E

[
f(xt)− f(x?)

]
+
µ

2
E
[
‖xt − x?‖2

]
Putting it together (with E

[
‖gt‖2

]
≤ B2):

E[f(xt)− f(x?)] ≤ B2γt
2

+
(γ−1t − µ)

2
E
[
‖xt − x?‖2

]
− γ−1t

2
E
[
‖xt+1 − x?‖2

]
.

Proof continues as for subgradient descent, this time with expectations.

EPFL Optimization for Machine Learning CS-439 11/31



Mini-batch SGD

Instead of using a single element fi, use an average of several of them:

g̃t :=
1

m

m∑
j=1

gj
t .

Extreme cases:
m = 1 ⇔ SGD as originally defined
m = n ⇔ full gradient descent

Benefit: Gradient computation can be naively parallelized

EPFL Optimization for Machine Learning CS-439 12/31



Mini-batch SGD

Variance Intuition: Taking an average of many independent random variables reduces
the variance. So for larger size of the mini-batch m, g̃t will be closer to the true
gradient, in expectation:

E
[∥∥∥g̃t −∇f(xt)

∥∥∥2] =E[∥∥∥ 1

m

m∑
j=1

gj
t −∇f(xt)

∥∥∥2]
=

1

m
E
[
‖g1

t −∇f(xt)‖2
]

=
1

m
E
[
‖g1

t ‖2
]
− 1

m
‖∇f(xt)‖2 ≤

B2

m
.

Using a modification of the SGD analysis, can use this quantity to relate convergence
rate to the rate of full gradient descent.

EPFL Optimization for Machine Learning CS-439 13/31



Stochastic Subgradient Descent

For problems which are not necessarily differentiable, we modify SGD to use a
subgradient of fi in each iteration. The update of stochastic subgradient descent is
given by

sample i ∈ [n] uniformly at random

let gt ∈ ∂fi(xt)

xt+1 := xt − γtgt.

In other words, we are using an unbiased estimate of a subgradient at each step,
E
[
gt
∣∣xt

]
∈ ∂f(xt).

Convergence in O(1/ε2), by using the subgradient property at the beginning of the
proof, where convexity was applied.

EPFL Optimization for Machine Learning CS-439 14/31



Constrained optimization

For constrained optimization, our theorem for the SGD convergence in O(1/ε2) steps
directly extends to constrained problems as well.

After every step of SGD, projection back to X is applied as usual. The resulting
algorithm is called projected SGD.

EPFL Optimization for Machine Learning CS-439 15/31



Chapter 6

Non-convex Optimization

EPFL Optimization for Machine Learning CS-439 16/31



Gradient Descent in the nonconvex world

I may get stuck in a local minimum and miss the global minimum;

x∗ y∗ x0

EPFL Optimization for Machine Learning CS-439 17/31



Gradient Descent in the nonconvex world II
Even if there is a unique local minimum (equal to the global minimum), we

I may get stuck in a saddle point;
I run off to infinity;
I possibly encounter other bad behaviors.

x0 y∗ x∗ x∗ x0

EPFL Optimization for Machine Learning CS-439 18/31



Gradient Descent in the nonconvex world III

Often, we observe good behavior in practice.

Theoretical explanations mostly missing.

This lecture: under favorable conditions, we sometimes can say something useful about
the behavior of gradient descent, even on nonconvex functions.

EPFL Optimization for Machine Learning CS-439 19/31



Smooth (but not necessarily convex) functions
Recall: A differentiable f : dom(f)→ R is smooth with parameter L ∈ R+ over a
convex set X ⊆ dom(f) if

f(y) ≤ f(x) +∇f(x)>(y − x) +
L

2
‖x− y‖2, ∀x,y ∈ X. (1)

Definition does not require convexity.

x y

f(y)

f(x) +∇f(x)>(y − x) + L
2
‖x− y‖2

EPFL Optimization for Machine Learning CS-439 20/31



Concave functions
f is called concave if −f is convex.

For all x, the graph of a differentiable concave function is below the tangent
hyperplane at x.

x y

f(y)

f(x) +∇f(x)>(y − x)

⇒ concave functions are smooth with L = 0. . . but boring from an optimization point
of view (no global minimum), gradient descent runs off to infinity

EPFL Optimization for Machine Learning CS-439 21/31



Bounded Hessians ⇒ smooth

Lemma

Let f : dom(f)→ R be twice differentiable, with X ⊆ dom(f) a convex set, and∥∥∇2f(x)
∥∥ ≤ L for all x ∈ X, where ‖·‖ is spectral norm. Then f is smooth with

parameter L over X.

Examples:

I all quadratic functions f(x) = x>Ax+ b>x+ c

I f(x) = sin(x) (many global minima)

EPFL Optimization for Machine Learning CS-439 22/31



Bounded Hessians ⇒ smooth II
Proof.

By Theorem 1.10 (applied to the gradient function ∇f), bounded Hessians imply
Lipschitz continuity of the gradient,

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , x,y ∈ X.

To show that this implies smoothness, we use h(1)− h(0) =
∫ 1
0 h
′(t)dt with

h(t) := f
(
x+ t(y − x)

)
, t ∈ [0, 1],

Chain rule:
h′(t) = ∇f

(
x+ t(y − x)

)>
(y − x).

EPFL Optimization for Machine Learning CS-439 23/31



Bounded Hessians ⇒ smooth III
Proof.

For x,y ∈ X:

f(y)− f(x)−∇f(x)>(y − x)

= h(1)− h(0)−∇f(x)>(y − x) (definition of h)

=

∫ 1

0
h′(t)dt−∇f(x)>(y − x)

=

∫ 1

0
∇f(x+ t(y − x))>(y − x)dt−∇f(x)>(y − x)

=

∫ 1

0

(
∇f(x+ t(y − x))>(y − x)−∇f(x)>(y − x)

)
dt

=

∫ 1

0

(
∇f(x+ t(y − x))−∇f(x)

)>
(y − x)dt

EPFL Optimization for Machine Learning CS-439 24/31



Bounded Hessians ⇒ smooth IV
Proof.

For x,y ∈ X:

f(y)− f(x)−∇f(x)>(y − x)

=

∫ 1

0

(
∇f(x+ t(y − x))−∇f(x)

)>
(y − x)dt

≤
∫ 1

0

∣∣(∇f(x+ t(y − x))−∇f(x)
)>

(y − x)
∣∣dt

≤
∫ 1

0

∥∥(∇f(x+ t(y − x))−∇f(x)
)∥∥ ‖(y − x)‖ dt (Cauchy-Schwarz)

≤
∫ 1

0
L ‖t(y − x)‖ ‖(y − x)‖ dt (Lipschitz continuous gradients (6.1))

=

∫ 1

0
Lt ‖x− y‖2 =

L

2
‖x− y‖2 .

EPFL Optimization for Machine Learning CS-439 25/31



Smooth ⇒ bounded Hessians?

Yes, over any open convex set X (Exercise 33).

EPFL Optimization for Machine Learning CS-439 26/31



Gradient descent on smooth functions
Will prove: ‖∇f(xt)‖2 → 0 for t→∞. . .

. . . at the same rate as f(xt)− f(x?)→ 0 in the convex case.

f(xt)− f(x?) itself may not converge to 0 in the nonconvex case:

x∗ y∗ x0

EPFL Optimization for Machine Learning CS-439 27/31



What does‖∇f(xt)‖2 → 0 mean?

It may or may not mean that we converge to a critical point (∇f(y?) = 0)

x0 y∗ x∗ x∗ x0

EPFL Optimization for Machine Learning CS-439 28/31



Gradient descent on smooth (not necessarily convex) functions

Theorem

Let f : Rd → R be differentiable with a global minimum x?; furthermore, suppose that
f is smooth with parameter L according to Definition 2.2. Choosing stepsize

γ :=
1

L
,

gradient descent yields

1

T

T−1∑
t=0

‖∇f(xt)‖2 ≤
2L

T

(
f(x0)− f(x?)

)
, T > 0.

In particular, ‖∇f(xt)‖2 ≤ 2L
T

(
f(x0)− f(x?)

)
for some t ∈ {0, . . . , T − 1}.

And also, limt→∞ ‖∇f(xt)‖2 = 0 (Exercise 34).

EPFL Optimization for Machine Learning CS-439 29/31



Gradient descent on smooth (not necessarily convex) functions II

Proof.

Sufficient decrease (Lemma 2.6), does not require convexity:

f(xt+1) ≤ f(xt)−
1

2L
‖∇f(xt)‖2, t ≥ 0.

Rewriting:
‖∇f(xt)‖2 ≤ 2L

(
f(xt)− f(xt+1)

)
.

Telescoping sum:

T−1∑
t=0

‖∇f(xt)‖2 ≤ 2L
(
f(x0)− f(xT )

)
≤ 2L

(
f(x0)− f(x?)

)
.

The statement follows (divide by T ).

EPFL Optimization for Machine Learning CS-439 30/31



No overshooting

In the smooth setting, and with stepsize 1/L, gradient descent cannot overshoot, i.e.
pass a critical point (Exercise 35).

x x xx′ x′ x′ = y?y? y?

x′ = x− γ∇f(x), γ < 1/L overshooting may happen with γ = 1/L

EPFL Optimization for Machine Learning CS-439 31/31


