forked from bXRE7at7sF-forks/SGM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
315 lines (257 loc) · 10.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import torch
import torch.utils.data
import lr_scheduler as L
import os
import argparse
import pickle
import time
import random
import numpy as np
from collections import OrderedDict
import opts
import models
import utils
import codecs
import json
parser = argparse.ArgumentParser(description='train.py')
opts.model_opts(parser)
opt = parser.parse_args()
config = utils.read_config(opt.config)
torch.manual_seed(opt.seed)
random.seed(opt.seed)
np.random.seed(opt.seed)
opts.convert_to_config(opt, config)
# cuda
use_cuda = torch.cuda.is_available() and len(opt.gpus) > 0
config.use_cuda = use_cuda
if use_cuda:
torch.cuda.set_device(opt.gpus[0])
torch.cuda.manual_seed(opt.seed)
torch.backends.cudnn.deterministic = True
with codecs.open(opt.label_dict_file, 'r', 'utf-8') as f:
label_dict = json.load(f)
def load_data():
print('loading data...\n')
data = pickle.load(open(config.data+'data.pkl', 'rb'))
data['train']['length'] = int(data['train']['length'] * opt.scale)
trainset = utils.BiDataset(data['train'], char=config.char)
validset = utils.BiDataset(data['valid'], char=config.char)
src_vocab = data['dict']['src']
tgt_vocab = data['dict']['tgt']
config.src_vocab_size = src_vocab.size()
config.tgt_vocab_size = tgt_vocab.size()
trainloader = torch.utils.data.DataLoader(dataset=trainset,
batch_size=config.batch_size,
shuffle=True,
num_workers=0,
collate_fn=utils.padding)
if hasattr(config, 'valid_batch_size'):
valid_batch_size = config.valid_batch_size
else:
valid_batch_size = config.batch_size
validloader = torch.utils.data.DataLoader(dataset=validset,
batch_size=valid_batch_size,
shuffle=False,
num_workers=0,
collate_fn=utils.padding)
return {'trainset': trainset, 'validset': validset,
'trainloader': trainloader, 'validloader': validloader,
'src_vocab': src_vocab, 'tgt_vocab': tgt_vocab}
def build_model(checkpoints, print_log):
for k, v in config.items():
print_log("%s:\t%s\n" % (str(k), str(v)))
# model
print('building model...\n')
model = getattr(models, opt.model)(config)
if checkpoints is not None:
model.load_state_dict(checkpoints['model'])
if opt.pretrain:
print('loading checkpoint from %s' % opt.pretrain)
pre_ckpt = torch.load(opt.pretrain)['model']
pre_ckpt = OrderedDict({key[8:]: pre_ckpt[key] for key in pre_ckpt if key.startswith('encoder')})
print(model.encoder.state_dict().keys())
print(pre_ckpt.keys())
model.encoder.load_state_dict(pre_ckpt)
if use_cuda:
model.cuda()
# optimizer
if checkpoints is not None:
optim = checkpoints['optim']
else:
optim = models.Optim(config.optim, config.learning_rate, config.max_grad_norm,
lr_decay=config.learning_rate_decay, start_decay_at=config.start_decay_at)
optim.set_parameters(model.parameters())
# print log
param_count = 0
for param in model.parameters():
param_count += param.view(-1).size()[0]
for k, v in config.items():
print_log("%s:\t%s\n" % (str(k), str(v)))
print_log("\n")
print_log(repr(model) + "\n\n")
print_log('total number of parameters: %d\n\n' % param_count)
return model, optim, print_log
def train_model(model, data, optim, epoch, params):
model.train()
trainloader = data['trainloader']
for src, tgt, src_len, tgt_len, original_src, original_tgt in trainloader:
model.zero_grad()
if config.use_cuda:
src = src.cuda()
tgt = tgt.cuda()
src_len = src_len.cuda()
lengths, indices = torch.sort(src_len, dim=0, descending=True)
src = torch.index_select(src, dim=0, index=indices)
tgt = torch.index_select(tgt, dim=0, index=indices)
dec = tgt[:, :-1]
targets = tgt[:, 1:]
try:
if config.schesamp:
if epoch > 8:
e = epoch - 8
loss, outputs = model(src, lengths, dec, targets, teacher_ratio=0.9**e)
else:
loss, outputs = model(src, lengths, dec, targets)
else:
loss, outputs = model(src, lengths, dec, targets)
pred = outputs.max(2)[1]
targets = targets.t()
num_correct = pred.eq(targets).masked_select(targets.ne(utils.PAD)).sum().item()
num_total = targets.ne(utils.PAD).sum().item()
if config.max_split == 0:
loss = torch.sum(loss) / num_total
loss.backward()
optim.step()
params['report_loss'] += loss.item()
params['report_correct'] += num_correct
params['report_total'] += num_total
except RuntimeError as e:
if 'out of memory' in str(e):
print('| WARNING: ran out of memory')
if hasattr(torch.cuda, 'empty_cache'):
torch.cuda.empty_cache()
else:
raise e
utils.progress_bar(params['updates'], config.eval_interval)
params['updates'] += 1
if params['updates'] % config.eval_interval == 0:
params['log']("epoch: %3d, loss: %6.3f, time: %6.3f, updates: %8d, accuracy: %2.2f\n"
% (epoch, params['report_loss'], time.time()-params['report_time'],
params['updates'], params['report_correct'] * 100.0 / params['report_total']))
print('evaluating after %d updates...\r' % params['updates'])
score = eval_model(model, data, params)
for metric in config.metrics:
params[metric].append(score[metric])
if score[metric] >= max(params[metric]):
with codecs.open(params['log_path']+'best_'+metric+'_prediction.txt','w','utf-8') as f:
f.write(codecs.open(params['log_path']+'candidate.txt','r','utf-8').read())
save_model(params['log_path']+'best_'+metric+'_checkpoint.pt', model, optim, params['updates'])
model.train()
params['report_loss'], params['report_time'] = 0, time.time()
params['report_correct'], params['report_total'] = 0, 0
if params['updates'] % config.save_interval == 0:
save_model(params['log_path']+'checkpoint.pt', model, optim, params['updates'])
optim.updateLearningRate(score=0, epoch=epoch)
def eval_model(model, data, params):
model.eval()
reference, candidate, source, alignments = [], [], [], []
count, total_count = 0, len(data['validset'])
validloader = data['validloader']
tgt_vocab = data['tgt_vocab']
for src, tgt, src_len, tgt_len, original_src, original_tgt in validloader:
if config.use_cuda:
src = src.cuda()
src_len = src_len.cuda()
with torch.no_grad():
if config.beam_size > 1 and (not config.global_emb):
samples, alignment, _ = model.beam_sample(src, src_len, beam_size=config.beam_size, eval_=True)
else:
samples, alignment = model.sample(src, src_len)
candidate += [tgt_vocab.convertToLabels(s.tolist(), utils.EOS) for s in samples]
source += original_src
reference += original_tgt
if alignment is not None:
alignments += [align for align in alignment]
count += len(original_src)
utils.progress_bar(count, total_count)
if config.unk and config.attention != 'None':
cands = []
for s, c, align in zip(source, candidate, alignments):
cand = []
for word, idx in zip(c, align):
if word == utils.UNK_WORD and idx < len(s):
try:
cand.append(s[idx])
except:
cand.append(word)
print("%d %d\n" % (len(s), idx))
else:
cand.append(word)
cands.append(cand)
if len(cand) == 0:
print('Error!')
candidate = cands
with codecs.open(params['log_path']+'candidate.txt','w+','utf-8') as f:
for i in range(len(candidate)):
f.write(" ".join(candidate[i])+'\n')
results = utils.eval_metrics(reference, candidate, label_dict, params['log_path'])
score = {}
result_line = ""
for metric in config.metrics:
score[metric] = results[metric]
result_line += metric + ": %s " % str(score[metric])
result_line += '\n'
params['log'](result_line)
return score
def save_model(path, model, optim, updates):
model_state_dict = model.state_dict()
checkpoints = {
'model': model_state_dict,
'config': config,
'optim': optim,
'updates': updates}
torch.save(checkpoints, path)
def build_log():
# log
if not os.path.exists(config.logF):
os.makedirs(config.logF)
if opt.log == '':
log_path = config.logF + str(int(time.time() * 1000)) + '/'
else:
log_path = config.logF + opt.log + '/'
if not os.path.exists(log_path):
os.makedirs(log_path)
print_log = utils.print_log(log_path + 'log.txt')
return print_log, log_path
def main():
# checkpoint
if opt.restore:
print('loading checkpoint...\n')
checkpoints = torch.load(opt.restore)
else:
checkpoints = None
data = load_data()
print_log, log_path = build_log()
model, optim, print_log = build_model(checkpoints, print_log)
# scheduler
if config.schedule:
scheduler = L.CosineAnnealingLR(optim.optimizer, T_max=config.epoch)
params = {'updates': 0, 'report_loss': 0, 'report_total': 0,
'report_correct': 0, 'report_time': time.time(),
'log': print_log, 'log_path': log_path}
for metric in config.metrics:
params[metric] = []
if opt.restore:
params['updates'] = checkpoints['updates']
if opt.mode == "train":
for i in range(1, config.epoch + 1):
if config.schedule:
scheduler.step()
print("Decaying learning rate to %g" % scheduler.get_lr()[0])
train_model(model, data, optim, i, params)
for metric in config.metrics:
print_log("Best %s score: %.2f\n" % (metric, max(params[metric])))
else:
score = eval_model(model, data, params)
if __name__ == '__main__':
main()