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Constrained Optimization

Constrained Optimization Problem

minimize f(x)

subject to xeX

EPFL Optimization for Machine Learning CS-439 3/19



Frank-Wolfe Algorithm

Frank-Wolfe Algorithm:

s = LMO(Vf(x¢)),

xir1 = (L—7)x + s,
for timesteps t = 0,1, ..., and
stepsize vy := H-Lz

Linear Minimization Oracle:

LMO(g) := argmin (s, g)
seX
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Properties

v

Aways feasible: xg,x1,...,x; € X.
X¢41 is on line segment [s,x¢], for v € [0, 1].

v

Reduces non-linear to linear optimization

v

Projection-free

v

Sparse iterates (in terms of corners s used)

Invented and analyzed 1956 by Marguerite Frank and Philip Wolfe.
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Example

Lasso Regression
min ||[Ax — b||* s.t. |x| <1
X

L1-ball is the convex hull of the unit basis vectors:
X ={x|||x[1 £1} =conv({xey,...,Le,}).

» Vi(x)=g:= AT (Ax —Db)
» LMO(g) = —sign(g;)e; with i := argmax |g;]|

1€[n]

simpler than projection onto L1-ball !
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Duality Gap

Duality Gap

9(x) = (x =, Vf(x))

Certificate for optimization quality:

max (x — s, V f(x))

seX

(x =x", Vf(x))
f(x) = f(x7)
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Stepsize variants

2
Yt = t+27
ve = argmin f((1—7)x; +7s),
~€[0,1]
. g(x¢) }
= —1
n mm{LHs—xtH?’ :
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Convergence in O(1/¢) steps

Theorem

Let f : RY — R be convex and smooth with parameter L, and xo € X. Then choosing
any of the above stepsizes, the Frank-Wolfe algorithm yields

2L diam(X)?

Floer) = £) < 2T

Where diam(X) := maxx,yex ||x — y|| is the diameter of X.
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Proof of Convergence in O(1/¢) steps

Lemma

For a step xy+1 := x¢ + v(s — x¢) with arbitrary step-size v € [0, 1], it holds that
2 .
f(xe11) < f(xe) —vg(xe) + G L diam(X)? ,

ifs = LMO(V f(x¢)).

Proof.
We write x := x4, ¥ := X¢41 = X + ¥(s — x). From the definition of smoothness of f,
we have f¥) = flx+9(s—x)) 2
< f(x)+ (s —x,Vf(x)) + L Ldiam(X)? .
The lemma follows by definition of the duality gap. O

EPFL Optimization for Machine Learning CS-439 10/19



Proof of Convergence in O(1/¢) steps

From the Lemma we know that for every step of FW, it holds that

fxer1) < f(xe) —vg(xe) +7°C,

if we chose v := t% and write C := 3L diam(X)2. This bound holds also for all

mentioned line-search variants (different LHS, same RHS).

Writing h(x) := f(x) — f(x*) for the (unknown) objective error at any point x, this
implies that

h(xt) = vg(xt) ++°C

h(xt) = vh(x¢) +9°C

(1 —=7y)h(x:) +7°C,

by the certificate property h(x) < g(x) of the duality gap.
The theorem then follows by induction (Exercise 1 of Lab 9). O

h(xt+1)

I IAIA
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Proof of Convergence in O(1/¢) steps
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Affine Invariance

Curvature Constant

Cp:=  sup %(f(}’) —f(x) = {y = x,Vf(x)))
x.s€X7€(0,1] 7
y=x+7(s—x)

Algorithm is invariant to scaling (affine transformations) of the input problem.

So is Cy.
(same as Newton, but here for constrained problems)
Cy < Ldiam(X)? for any norm!
All proofs hold for Cy, instead of picking a particular L diam(X)?.
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Convergence in Duality Gap

Theorem

Let f: R? — R be convex and smooth with parameter L, and xg € X, T > 2. Then
choosing any of the above stepsizes, the Frank-Wolfe algorithm yields at,1 <t <T

st 27/4C
f
< -7
90) < Ty
Proof.
Idea: not all gaps can be small (use Lemma again). O
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Proof (1)
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Proof (1)
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Proof (1)
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Extensions and Use Cases

Extensions:

> Approximate LMO (of additive of multiplicative accuracy)
» Randomized LMO

» unconstrained problems (Matching Pursuit variants)

Use cases:
Whenever projection is more costly than solving a linear problem

» Lasso and other L1-constrained problems
» Matrix Completion: scalable algorithm

» Relaxation of combinatorial problems

(e.g. matchings, network flows etc)
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Applications

recall: LMO(g) := argmin (s, g)

X := conv(A)
Examples A |Al|d | LMO (g)
L1-ball {te;} 2d | d | +e; with argmax; |g;
Simplex {e;} d |d |e; with argmin, g;
Norms {x,||x|| <1} |oo |d |argmin(s,g)

s,|Is[[<1

Nuclear norm | {Y, [|Y]l. <1} | oo |d?
Wavelets .. 00 | 00
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