
Optimization for Machine Learning
CS-439

Lecture 10: Duality, Gradient-free, and Applications

Martin Jaggi

EPFL – github.com/epfml/OptML_course

May 8, 2020

github.com/epfml/OptML_course

Chapter X.1

Duality

EPFL Optimization for Machine Learning CS-439 2/18

Duality
Given a function f : Rd → R+, define its conjugate f∗ : Rd → R+ as

f∗(y) := max
x

x>y − f(x)

a.k.a. Legendre transform or Fenchel conjugate function. (Note R+ := R ∪ {+∞})3.3 The conjugate function 91

f(x)

(0,−f∗(y))

xy

x

Figure 3.8 A function f : R → R, and a value y ∈ R. The conjugate
function f∗(y) is the maximum gap between the linear function yx and
f(x), as shown by the dashed line in the figure. If f is differentiable, this
occurs at a point x where f ′(x) = y.

3.3.1 Definition and examples

Let f : Rn → R. The function f∗ : Rn → R, defined as

f∗(y) = sup
x∈dom f

(
yT x − f(x)

)
, (3.18)

is called the conjugate of the function f . The domain of the conjugate function
consists of y ∈ Rn for which the supremum is finite, i.e., for which the difference
yT x − f(x) is bounded above on dom f . This definition is illustrated in figure 3.8.

We see immediately that f∗ is a convex function, since it is the pointwise
supremum of a family of convex (indeed, affine) functions of y. This is true whether
or not f is convex. (Note that when f is convex, the subscript x ∈ dom f is not
necessary since, by convention, yT x − f(x) = −∞ for x ̸∈ dom f .)

We start with some simple examples, and then describe some rules for conjugat-
ing functions. This allows us to derive an analytical expression for the conjugate
of many common convex functions.

Example 3.21 We derive the conjugates of some convex functions on R.

• Affine function. f(x) = ax + b. As a function of x, yx − ax − b is bounded if
and only if y = a, in which case it is constant. Therefore the domain of the
conjugate function f∗ is the singleton {a}, and f∗(a) = −b.

• Negative logarithm. f(x) = − log x, with dom f = R++. The function xy+log x
is unbounded above if y ≥ 0 and reaches its maximum at x = −1/y otherwise.
Therefore, dom f∗ = {y | y < 0} = −R++ and f∗(y) = − log(−y)−1 for y < 0.

• Exponential. f(x) = ex. xy − ex is unbounded if y < 0. For y > 0, xy − ex

reaches its maximum at x = log y, so we have f∗(y) = y log y − y. For y = 0,

figure by Boyd & Vandenberghe

Figure: maximum gap between
linear function x>y and f(x).

EPFL Optimization for Machine Learning CS-439 3/18

Properties
I f∗ is always convex, even if f is not.

Proof: point-wise maximum of convex (affine) functions in y.
I Fenchel’s inequality: for any x,y,

f(x) + f∗(y) ≥ x>y

I Hence conjugate of conjugate f∗∗ satisfies f∗∗ ≤ f .
I If f is closed and convex, then f∗∗ = f .
I If f is closed and convex, then for any x,y,

Exercise!
y ∈ ∂f(x)⇔ x ∈ ∂f∗(y)

⇔ f(x) + f∗(y) = x>y

I Separable functions: If f(u,v) = f1(u) + f2(v), then

f∗(w, z) = f∗1 (w) + f∗2 (z)

EPFL Optimization for Machine Learning CS-439 4/18

Examples

I Recall: Indicator function of a set C ⊆ Rd is

ιC(x) :=

{
0 x ∈ C,
+∞ otherwise.

If f(x) = ιC(x), then its conjugate is

f∗(y) = max
x∈C

y>x

called the support function of C.

I Norm: if f(x) = ‖x‖, then its conjugate is

f∗(y) = ι{z:‖z‖∗≤1}(y)

(i.e. indicator of the dual norm ball) Note: The dual norm of ‖.‖ is defined as
‖y‖∗ := max‖x‖≤1 y>x. E.g. ‖.‖1 ↔ ‖.‖∞.

EPFL Optimization for Machine Learning CS-439 5/18

Examples, cont

Generalized linear models
min
x∈Rd

f(Ax) + g(x)

reformulate
min

x∈Rd,w∈Rn
f(w) + g(x) s.t. w = Ax

Lagrange dual function

L(u) := min
x∈Rd,w∈Rn

f(w) + g(x) + u>(w −Ax)

=− f∗(−u)− g∗(A>u)

Dual problem
max
u∈Rn

[
L(u) = −f∗(−u)− g∗(A>u)

]
.

EPFL Optimization for Machine Learning CS-439 6/18

Examples, cont

Lasso
min
x∈Rd

1
2‖Ax− b‖2 + λ‖x‖1

is an example, for f(w) := 1
2‖w − b‖2 and g(x) := λ‖x‖1.

Can compute f∗(u) = 1
2‖b‖2 − 1

2‖b− u‖2
and g∗(v) = ι{z:‖z‖∞≤1}(v/λ),

so that the dual problem is

max
u∈Rn

− f∗(−u)− g∗(A>u).

⇔ max
u∈Rn

− 1
2‖b‖2 + 1

2‖b + u‖2 s.t. ‖A>u/λ‖∞ ≤ 1.

⇔ min
u∈Rn

‖b + u‖2 s.t. ‖A>u‖∞ ≤ λ.

EPFL Optimization for Machine Learning CS-439 7/18

Why Duality?

Similarly for least squares, ridge regression, SVM, logistic regression, elastic net, etc.

Advantages:

I Duality gap gives a certificate of current optimization quality

f(Ax̄) + g(x̄)

≥ minx∈Rd f(Ax) + g(x)

≥
maxu∈Rn −f∗(−u)− g∗(A>u)

≥ −f∗(−ū)− g∗(A>ū)

for any x̄,ū.

I Stopping criterion

I Dual can in some cases be easier to solve

EPFL Optimization for Machine Learning CS-439 8/18

Chapter X.2

Zero-Order Optimization
⇔ Derivative-Free ..
⇔ Blackbox ..

EPFL Optimization for Machine Learning CS-439 9/18

Look mom no gradients!

Can we optimize minx∈Rd f(x) if without access to gradients?

meet the newest fanciest optimization algorithm,...
Random search

pick a random direction dt ∈ Rd
γ := argmin

γ∈R
f(xt + γdt) (line-search)

xt+1 := xt + γdt

EPFL Optimization for Machine Learning CS-439 10/18

Convergence rate for derivative-free random search
Converges same as gradient descent - up to a slow-down factor d.

Proof. Assume that f is a L-smooth convex, differentiable function. For any γ, by
smoothness, we have:

f(xt + γdt) ≤ f(xt) + γ〈dt,∇f(xt)〉+
γ2L

2
‖dt‖2

Minimizing the upper bound, there is a step size γ̄ for which

f(xt + γ̄dt) ≤ f(xt)−
1

L

〈 dt
‖dt‖2

,∇f(xt)
〉2

The step size we actually took (based on f directly) can only be better:

f(xt + γdt) ≤ f(xt + γ̄dt) .

Taking expectations, and using the Lemma Er(r
>g)2 = 1

d ‖g‖
2 for r ∼ sphere ⊆ Rd :

E[f(xt + γdt)] ≤ E[f(xt)]−
1

Ld
E[‖∇f(xt)‖2] .

EPFL Optimization for Machine Learning CS-439 11/18

Convergence rate for derivative-free random search

Same as what we obtained for gradient descent,
now with an extra factor of d. d can be huge!!!

Can do the same for different function classes, as before

I For convex functions, we get a rate of O(dL/ε) .

I For strongly convex, we get O(dL log(1/ε)) .

Always d times the complexity of gradient descent on the function class.
credits to Moritz Hardt

EPFL Optimization for Machine Learning CS-439 12/18

Applications for derivative-free random search

Applications

I competitive method for Reinforcement learning

I memory and communication advantages: never need to store a gradient

I hyperparameter optimization, and other difficult e.g. discrete optimization
problems

I can be improved to learn a second-order model of the function, during
optimization [Stich PhD thesis, 2014]

EPFL Optimization for Machine Learning CS-439 13/18

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/98277/eth-47310-02.pdf

Reinforcement learning

st+1 = f(st,at, et) .

where st is the state of the system, at is the control action, and et is some random
noise. We assume that f is fixed, but unknown.

We search for a control ‘policy’

at := π(a1, . . . ,at−1, s0, . . . , st) .

which takes a trajectory of the dynamical system and outputs a new control action.
Want to maximize overall reward

max
at

Eet

[N∑

t=0

Rt(st,at)
]

s.t. st+1 = f(st,at, et)

(s0 given)

Examples: Simulations, Games (e.g. Atari), Alpha Go

EPFL Optimization for Machine Learning CS-439 14/18

Chapter X.3

Adaptive & other SGD Methods

EPFL Optimization for Machine Learning CS-439 15/18

Adagrad
Adagrad is an adaptive variant of SGD

pick a stochastic gradient gt

update [Gt]i :=

t∑

s=0

([gs]i)
2 ∀i

[xt+1]i := [xt]i −
γ√
[Gt]i

[gt]i ∀i

(standard choice of gt := ∇fj(xt) for sum-structured objective functions f =
∑

j fj)

I chooses an adaptive, coordinate-wise learning rate

I strong performance in practice

I Variants: Adadelta, Adam, RMSprop

EPFL Optimization for Machine Learning CS-439 16/18

Adam

Adam is a momentum variant of Adagrad

pick a stochastic gradient gt

mt := β1mt−1 + (1− β1)gt (momentum term)

[vt]i := β2[vt−1]i + (1− β2)([gs]i)2 ∀i (2nd-order statistics)

[xt+1]i := [xt]i −
γ√
[vt]i

[mt]i ∀i

I faster forgetting of older weights

I momentum from previous gradients (see acceleration, lecture 6)

I (simplified version, without correction for initialization of m0,v0)

I strong performance in practice, e.g. for self-attention networks

EPFL Optimization for Machine Learning CS-439 17/18

SignSGD

Only use the sign (one bit) of each gradient entry:
SignSGD is a communication efficient variant of SGD.

pick a stochastic gradient gt

[xt+1]i := [xt]i − γt sign([gt]i) ∀i

(with possible rescaling of γt with ‖gt‖1)

I communication efficient for distributed training

I convergence issues

EPFL Optimization for Machine Learning CS-439 18/18

