forked from bubbliiiing/unet-tf2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoc_annotation_medical.py
56 lines (49 loc) · 1.9 KB
/
voc_annotation_medical.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import random
#----------------------------------------------------------------------#
# 医药数据集的例子没有验证集
#----------------------------------------------------------------------#
trainval_percent = 1
train_percent = 1
#-------------------------------------------------------#
# 指向医药数据集所在的文件夹
# 默认指向根目录下的Medical_Datasets
#-------------------------------------------------------#
VOCdevkit_path = 'Medical_Datasets'
if __name__ == "__main__":
random.seed(0)
print("Generate txt in ImageSets.")
segfilepath = os.path.join(VOCdevkit_path, 'Labels')
saveBasePath = os.path.join(VOCdevkit_path, 'ImageSets/Segmentation')
temp_seg = os.listdir(segfilepath)
total_seg = []
for seg in temp_seg:
if seg.endswith(".png"):
total_seg.append(seg)
num = len(total_seg)
list = range(num)
tv = int(num*trainval_percent)
tr = int(tv*train_percent)
trainval= random.sample(list,tv)
train = random.sample(trainval,tr)
print("train and val size",tv)
print("traub suze",tr)
ftrainval = open(os.path.join(saveBasePath,'trainval.txt'), 'w')
ftest = open(os.path.join(saveBasePath,'test.txt'), 'w')
ftrain = open(os.path.join(saveBasePath,'train.txt'), 'w')
fval = open(os.path.join(saveBasePath,'val.txt'), 'w')
for i in list:
name=total_seg[i][:-4]+'\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
print("Generate txt in ImageSets done.")