-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
132 lines (97 loc) · 3.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os, sys
from datetime import datetime
import logging as log
import numpy as np
import torch
import random
import shutil
import tempfile
import wandb
import pickle
from torch.utils.data import DataLoader
from lib.datasets.customhumans_dataset import CustomHumanDataset
from lib.models.trainer import Trainer
from lib.models.evaluator import Evaluator
from lib.utils.config import *
def create_archive(save_dir, config):
with tempfile.TemporaryDirectory() as tmpdir:
shutil.copy(config, os.path.join(tmpdir, 'config.yaml'))
shutil.copy('train.py', os.path.join(tmpdir, 'train.py'))
# shutil.copy('test.py', os.path.join(tmpdir, 'test.py'))
shutil.copytree(
os.path.join('lib'),
os.path.join(tmpdir, 'lib'),
ignore=shutil.ignore_patterns('__pycache__'))
shutil.make_archive(
os.path.join(save_dir, 'code_copy'),
'zip',
tmpdir)
def main(config):
# Set random seed.
random.seed(config.seed)
np.random.seed(config.seed)
torch.manual_seed(config.seed)
log_dir = os.path.join(
config.save_root,
config.exp_name,
f'{datetime.now().strftime("%Y%m%d-%H%M%S")}'
)
# Backup code.
create_archive(log_dir, config.config)
# Initialize dataset and dataloader.
with open('data/smpl_mesh.pkl', 'rb') as f:
smpl_mesh = pickle.load(f)
dataset = CustomHumanDataset(config.num_samples, config.repeat_times)
dataset.init_from_h5(config.data_root)
loader = DataLoader(dataset=dataset,
batch_size=config.batch_size,
shuffle=True,
num_workers=config.workers,
pin_memory=True)
trainer = Trainer(config, dataset.smpl_V, smpl_mesh['smpl_F'], log_dir)
evaluator = Evaluator(config, log_dir)
if config.wandb_id is not None:
wandb_id = config.wandb_id
else:
wandb_id = wandb.util.generate_id()
with open(os.path.join(log_dir, 'wandb_id.txt'), 'w+') as f:
f.write(wandb_id)
wandb_mode = "disabled" if (not config.wandb) else "online"
wandb.init(id=wandb_id,
project=config.wandb_name,
config=config,
name=os.path.basename(log_dir),
resume="allow",
settings=wandb.Settings(start_method="fork"),
mode=wandb_mode,
dir=log_dir)
wandb.watch(trainer)
if config.resume:
trainer.load_checkpoint(config.resume)
global_step = trainer.global_step
start_epoch = trainer.epoch
for epoch in range(start_epoch, config.epochs):
for data in loader:
trainer.step(epoch=epoch, n_iter=global_step, data=data)
if global_step % config.log_every == 0:
trainer.log(global_step, epoch)
if config.use_2d_from_epoch >= 0 and \
epoch >= config.use_2d_from_epoch and \
global_step % config.log_every == 0:
trainer.write_images(global_step)
global_step += 1
if epoch % config.save_every == 0:
trainer.save_checkpoint(full=False)
if epoch % config.valid_every == 0 and epoch > 0:
evaluator.init_models(trainer)
evaluator.reconstruction(32, epoch=epoch)
wandb.finish()
if __name__ == "__main__":
parser = parse_options()
args, args_str = argparse_to_str(parser)
handlers = [log.StreamHandler(sys.stdout)]
log.basicConfig(level=args.log_level,
format='%(asctime)s|%(levelname)8s| %(message)s',
handlers=handlers)
log.info(f'Info: \n{args_str}')
main(args)