forked from imlixinyang/AGUIT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface.yaml
55 lines (52 loc) · 2.75 KB
/
face.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
# Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
# logger options
image_save_iter: 1000 # How often do you want to save output images during training
image_display_iter: 1000 # How often do you want to display output images during training
display_size: 4 # How many images do you want to display each time
snapshot_save_iter: 10000 # How often do you want to save trained models
log_iter: 10 # How often do you want to log the training stats
# optimization options
max_iter: 400000 # maximum number of training iterations
batch_size: 8 # batch size
weight_decay: 0.0001 # weight decay
beta1: 0.5 # Adam parameter
beta2: 0.999 # Adam parameter
init: kaiming # initialization [gaussian/kaiming/xavier/orthogonal]
lr: 0.0001 # initial learning rate
lr_policy: step # learning rate scheduler
step_size: 100000 # how often to decay learning rate
gamma: 0.5 # how much to decay learning rate
adv_w: 1
adv_c_w: 1
rec_w: 10
rec_s_w: 10
rec_c_w: 10
cla_w: 10
cyc_w: 10
kld_w: 1
gen:
dim: 64 # number of filters in the bottommost layer
mlp_dim: 256 # number of filters in MLP
noise_dim: 8 # length of style code
activ: relu # activation function [relu/lrelu/prelu/selu/tanh]
n_downsample: 2 # number of downsampling layers in content encoder
n_res: 4 # number of residual blocks in content encoder/decoder
pad_type: reflect # padding type [zero/reflect]
selected_attrs: [Black_Hair, Blond_Hair, Brown_Hair, Male, Young, Smiling, Eyeglasses, Goatee]
#selected attributes
dis:
dim: 64 # number of filters in the bottommost layer
norm: none # normalization layer [none/bn/in/ln]
activ: lrelu # activation function [relu/lrelu/prelu/selu/tanh]
n_layer: 5 # number of layers in D
num_scales: 3 # number of scales
pad_type: reflect # padding type [zero/reflect]
# data options
input_dim: 3 # number of image channels
new_size: 128 # first resize the shortest image side to this size
crop_image_height: 128 # random crop image of this height
crop_image_width: 128 # random crop image of this width
data_root: /home/lxy/multi-label/datasets/face512/ # dataset folder location
label_root: /home/lxy/multi-label/datasets/face/train.txt
# label folder location