Documentation | Resources | Release Notes
XGBoost4J is the JVM package of xgboost. It brings all the optimizations and power xgboost into JVM ecosystem.
- Train XGBoost models on scala and java with easy customizations.
- Run distributed xgboost natively on jvm frameworks such as Flink and Spark.
You can find more about XGBoost on Documentation and Resource Page.
NOTE on LIBSVM Format:
- Use 1-based ascending indexes for the LIBSVM format in distributed training mode -
- Spark does the internal conversion, and does not accept formats that are 0-based
- Whereas, use 0-based indexes format when predicting in normal mode - for instance, while using the saved model in the Python package
import ml.dmlc.xgboost4j.scala.DMatrix
import ml.dmlc.xgboost4j.scala.XGBoost
object XGBoostScalaExample {
def main(args: Array[String]) {
// read trainining data, available at xgboost/demo/data
val trainData =
new DMatrix("/path/to/agaricus.txt.train")
// define parameters
val paramMap = List(
"eta" -> 0.1,
"max_depth" -> 2,
"objective" -> "binary:logistic").toMap
// number of iterations
val round = 2
// train the model
val model = XGBoost.train(trainData, paramMap, round)
// run prediction
val predTrain = model.predict(trainData)
// save model to the file.
model.saveModel("/local/path/to/model")
}
}
XGBoost4J-Spark supports training XGBoost model through RDD and Dataframe
RDD Version:
import org.apache.spark.SparkContext
import org.apache.spark.mllib.util.MLUtils
import ml.dmlc.xgboost4j.scala.spark.XGBoost
object SparkWithRDD {
def main(args: Array[String]): Unit = {
if (args.length != 3) {
println(
"usage: program num_of_rounds training_path model_path")
sys.exit(1)
}
// if you do not want to use KryoSerializer in Spark, you can ignore the related configuration
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("XGBoost-spark-example")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
sparkConf.registerKryoClasses(Array(classOf[Booster]))
val sc = new SparkContext(sparkConf)
val inputTrainPath = args(1)
val outputModelPath = args(2)
// number of iterations
val numRound = args(0).toInt
val trainRDD = MLUtils.loadLibSVMFile(sc, inputTrainPath)
// training parameters
val paramMap = List(
"eta" -> 0.1f,
"max_depth" -> 2,
"objective" -> "binary:logistic").toMap
// use 5 distributed workers to train the model
// useExternalMemory indicates whether
val model = XGBoost.train(trainRDD, paramMap, numRound, nWorkers = 5, useExternalMemory = true)
// save model to HDFS path
model.saveModelToHadoop(outputModelPath)
}
}
Dataframe Version:
object SparkWithDataFrame {
def main(args: Array[String]): Unit = {
if (args.length != 5) {
println(
"usage: program num_of_rounds num_workers training_path test_path model_path")
sys.exit(1)
}
// create SparkSession
val sparkConf = new SparkConf().setAppName("XGBoost-spark-example")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
sparkConf.registerKryoClasses(Array(classOf[Booster]))
val sparkSession = SparkSession.builder().appName("XGBoost-spark-example").config(sparkConf).
getOrCreate()
// create training and testing dataframes
val inputTrainPath = args(2)
val inputTestPath = args(3)
val outputModelPath = args(4)
// number of iterations
val numRound = args(0).toInt
import DataUtils._
val trainRDDOfRows = MLUtils.loadLibSVMFile(sparkSession.sparkContext, inputTrainPath).
map{ labeledPoint => Row(labeledPoint.features, labeledPoint.label)}
val trainDF = sparkSession.createDataFrame(trainRDDOfRows, StructType(
Array(StructField("features", ArrayType(FloatType)), StructField("label", IntegerType))))
val testRDDOfRows = MLUtils.loadLibSVMFile(sparkSession.sparkContext, inputTestPath).
zipWithIndex().map{ case (labeledPoint, id) =>
Row(id, labeledPoint.features, labeledPoint.label)}
val testDF = sparkSession.createDataFrame(testRDDOfRows, StructType(
Array(StructField("id", LongType),
StructField("features", ArrayType(FloatType)), StructField("label", IntegerType))))
// training parameters
val paramMap = List(
"eta" -> 0.1f,
"max_depth" -> 2,
"objective" -> "binary:logistic").toMap
val xgboostModel = XGBoost.trainWithDataset(
trainDF, paramMap, numRound, nWorkers = args(1).toInt, useExternalMemory = true)
// xgboost-spark appends the column containing prediction results
xgboostModel.transform(testDF).show()
}
}
import ml.dmlc.xgboost4j.scala.flink.XGBoost
import org.apache.flink.api.scala._
import org.apache.flink.api.scala.ExecutionEnvironment
import org.apache.flink.ml.MLUtils
object DistTrainWithFlink {
def main(args: Array[String]) {
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
// read trainining data
val trainData =
MLUtils.readLibSVM(env, "/path/to/data/agaricus.txt.train")
// define parameters
val paramMap = List(
"eta" -> 0.1,
"max_depth" -> 2,
"objective" -> "binary:logistic").toMap
// number of iterations
val round = 2
// train the model
val model = XGBoost.train(trainData, paramMap, round)
val predTrain = model.predict(trainData.map{x => x.vector})
model.saveModelToHadoop("file:///path/to/xgboost.model")
}
}