Skip to content
forked from dmlc/xgboost

Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Flink and DataFlow

License

Notifications You must be signed in to change notification settings

viviancodes/xgboost

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

XGBoost: eXtreme Gradient Boosting

An optimized general purpose gradient boosting library. The library is parallelized, and also provides an optimized distributed version. It implements machine learning algorithm under gradient boosting framework, including generalized linear model and gradient boosted regression tree (GBDT). XGBoost can also also distributed and scale to Terascale data

Contributors: https://github.com/dmlc/xgboost/graphs/contributors

Documentations: Documentation of xgboost

Issues Tracker: https://github.com/dmlc/xgboost/issues

Please join XGBoost User Group to ask questions and share your experience on xgboost.

  • Use issue tracker for bug reports, feature requests etc.
  • Use the user group to post your experience, ask questions about general usages.

Gitter for developers Gitter chat for developers at https://gitter.im/dmlc/xgboost

Distributed Version: Distributed XGBoost

Highlights of Usecases: Highlight Links

What's New

Features

  • Easily accessible in python, R, Julia, CLI
  • Fast speed and memory efficient
    • Can be more than 10 times faster than GBM in sklearn and R
    • Handles sparse matrices, support external memory
  • Accurate prediction, and used extensively by data scientists and kagglers
  • Distributed and Portable
    • The distributed version runs on Hadoop (YARN), MPI, SGE etc.
    • Scales to billions of examples and beyond

Build

  • Run bash build.sh (you can also type make)

Version

  • This version xgboost-0.3, the code has been refactored from 0.2x to be cleaner and more flexibility
  • This version of xgboost is not compatible with 0.2x, due to huge amount of changes in code structure
    • This means the model and buffer file of previous version can not be loaded in xgboost-3.0
  • For legacy 0.2x code, refer to Here
  • Change log in CHANGES.md

XGBoost in Graphlab Create

About

Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Flink and DataFlow

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 40.6%
  • Scala 15.6%
  • R 14.0%
  • Python 11.3%
  • Cuda 7.2%
  • Java 6.4%
  • Other 4.9%