-
-
Notifications
You must be signed in to change notification settings - Fork 449
/
Copy pathdeepbooru.py
87 lines (74 loc) · 3.21 KB
/
deepbooru.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import re
import torch
import numpy as np
from PIL import Image
from modules import modelloader, paths, deepbooru_model, devices, images, shared
re_special = re.compile(r'([\\()])')
class DeepDanbooru:
def __init__(self):
self.model = None
def load(self):
if self.model is not None:
return
model_path = os.path.join(paths.models_path, "DeepDanbooru")
shared.log.debug(f'Load interrogate model: type=DeepDanbooru folder="{model_path}"')
files = modelloader.load_models(
model_path=model_path,
model_url='https://github.com/AUTOMATIC1111/TorchDeepDanbooru/releases/download/v1/model-resnet_custom_v3.pt',
ext_filter=[".pt"],
download_name='model-resnet_custom_v3.pt',
)
self.model = deepbooru_model.DeepDanbooruModel()
self.model.load_state_dict(torch.load(files[0], map_location="cpu"))
self.model.eval()
self.model.to(devices.cpu, devices.dtype)
def start(self):
self.load()
self.model.to(devices.device)
def stop(self):
if not shared.opts.interrogate_keep_models_in_memory:
self.model.to(devices.cpu)
devices.torch_gc()
def tag(self, pil_image):
self.start()
res = self.tag_multi(pil_image)
self.stop()
return res
def tag_multi(self, pil_image, force_disable_ranks=False):
if isinstance(pil_image, list):
pil_image = pil_image[0] if len(pil_image) > 0 else None
if isinstance(pil_image, dict) and 'name' in pil_image:
pil_image = Image.open(pil_image['name'])
if pil_image is None:
return ''
pic = images.resize_image(2, pil_image.convert("RGB"), 512, 512)
a = np.expand_dims(np.array(pic, dtype=np.float32), 0) / 255
with devices.inference_context(), devices.autocast():
x = torch.from_numpy(a).to(devices.device)
y = self.model(x)[0].detach().float().cpu().numpy()
probability_dict = {}
for tag, probability in zip(self.model.tags, y):
if probability < shared.opts.interrogate_deepbooru_score_threshold:
continue
if tag.startswith("rating:"):
continue
probability_dict[tag] = probability
if shared.opts.deepbooru_sort_alpha:
tags = sorted(probability_dict)
else:
tags = [tag for tag, _ in sorted(probability_dict.items(), key=lambda x: -x[1])]
res = []
filtertags = {x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")}
for tag in [x for x in tags if x not in filtertags]:
probability = probability_dict[tag]
tag_outformat = tag
if shared.opts.deepbooru_use_spaces:
tag_outformat = tag_outformat.replace('_', ' ')
if shared.opts.deepbooru_escape:
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
if shared.opts.interrogate_return_ranks and not force_disable_ranks:
tag_outformat = f"({tag_outformat}:{probability:.3f})"
res.append(tag_outformat)
return ", ".join(res)
model = DeepDanbooru()