References:
- FDA. Framework for FDA RWE program. Available at: https://www.fda.gov/downloads/ScienceResearch/SpecialTopics/RealWorldEvidence/UCM627769.pdf.
- Eworuke, E., Welch, E. C., Tobenkin, A. & Maro, J. C. Use of FDA’s Sentinel System to Quantify Seizure Risk Immediately Following New Ranolazine Exposure. Drug Saf. (2019). doi:10.1007/s40264-019-00798-2
- Li, J. et al. Association of Risk for Venous Thromboembolism With Use of Low-Dose Extended- and Continuous-Cycle Combined Oral Contraceptives: A Safety Study Using the Sentinel Distributed Database. JAMA Intern. Med. 178, 1482–1488 (2018).
- Maro, J. C. et al. SAT0140 Risk of venous thromboembolism in rheumatoid arthritis patients treated with biologic and non-biologic dmards. Ann. Rheum. Dis. 77, 932–932 (2018).
- Sobel, R. E. et al. Do FDA label changes work? Assessment of the 2010 class label change for proton pump inhibitors using the Sentinel System’s analytic tools. Pharmacoepidemiol. Drug Saf. 27, 332–339 (2018).
- Cocoros, N. M. et al. FDA-Catalyst—Using FDA’s Sentinel Initiative for large-scale pragmatic randomized trials: Approach and lessons learned during the planning phase of the first trial. Clin. Trials 16, 90–97 (2019).
- Schuemie, M. J., Ryan, P. B., Hripcsak, G., Madigan, D. & Suchard, M. A. Improving reproducibility by using high-throughput observational studies with empirical calibration. Philos. Transact. A Math. Phys. Eng. Sci. 376, (2018).
- Schuemie, M. J., Hripcsak, G., Ryan, P. B., Madigan, D. & Suchard, M. A. Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data. Proc. Natl. Acad. Sci. U. S. A. 115, 2571–2577 (2018).
- Reps, J. M., Schuemie, M. J., Suchard, M. A., Ryan, P. B. & Rijnbeek, P. R. Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data. J. Am. Med. Inform. Assoc. JAMIA 25, 969–975 (2018).
- Clinicaltrials.gov study: Diuretic Comparison Project (DCP). Available at: https://clinicaltrials.gov/ct2/show/NCT02185417.
- Califf, R. M. The Patient-Centered Outcomes Research Network: a national infrastructure for comparative effectiveness research. N. C. Med. J. 75, 204–210 (2014).
- Collins, F. S., Hudson, K. L., Briggs, J. P. & Lauer, M. S. PCORnet: turning a dream into reality. J. Am. Med. Inform. Assoc. JAMIA 21, 576–577 (2014).
- Fleurence, R. L. et al. Launching PCORnet, a national patient-centered clinical research network. J. Am. Med. Inform. Assoc. JAMIA 21, 578–582 (2014).
- Kaushal, R. et al. Changing the research landscape: the New York City Clinical Data Research Network. J. Am. Med. Inform. Assoc. JAMIA 21, 587–590 (2014).
- Ohno-Machado, L. et al. pSCANNER: patient-centered Scalable National Network for Effectiveness Research. J. Am. Med. Inform. Assoc. JAMIA 21, 621–626 (2014).
- Qualls, L. G. et al. Evaluating Foundational Data Quality in the National Patient-Centered Clinical Research Network (PCORnet®). EGEMS Wash. DC 6, 3 (2018).
- Toh, S. et al. The National Patient-Centered Clinical Research Network (PCORnet) Bariatric Study Cohort: Rationale, Methods, and Baseline Characteristics. JMIR Res. Protoc. 6, e222 (2017).
- Heerman, W. J. et al. Maternal antibiotic use during pregnancy and childhood obesity at age 5 years. Int. J. Obes. 2005 (2019). doi:10.1038/s41366-018-0316-6
- Block, J. P. et al. Early Antibiotic Exposure and Weight Outcomes in Young Children. Pediatrics 142, (2018).
- Block, J. P. et al. PCORnet Antibiotics and Childhood Growth Study: Process for Cohort Creation and Cohort Description. Acad. Pediatr. 18, 569–576 (2018).
- Fishman, E. et al. Validation of a claims-based algorithm identifying eligible study subjects in the ADAPTABLE pragmatic clinical trial. Contemp. Clin. Trials Commun. 12, 154–160 (2018).
- Johnston, A., Jones, W. S. & Hernandez, A. F. The ADAPTABLE Trial and Aspirin Dosing in Secondary Prevention for Patients with Coronary Artery Disease. Curr. Cardiol. Rep. 18, 81 (2016).
- Pletcher, M. J., Forrest, C. B. & Carton, T. W. PCORnet’s Collaborative Research Groups. Patient Relat. Outcome Meas. 9, 91–95 (2018).
- Khare, R. et al. A longitudinal analysis of data quality in a large pediatric data research network. J. Am. Med. Inform. Assoc. JAMIA 24, 1072–1079 (2017).
- Lang, J. E. et al. Being Overweight or Obese and the Development of Asthma. Pediatrics 142, (2018).
- Jean, J. et al. Retrospective Analysis of Candida-related Conditions in Infancy and Early Childhood Caries. Pediatr. Dent. 40, 131–135 (2018).
- Hubbard, R. A. et al. A Bayesian latent class approach for EHR-based phenotyping. Stat. Med. 38, 74–87 (2019).
- Waitzfelder, B. et al. Treatment Initiation for New Episodes of Depression in Primary Care Settings. J. Gen. Intern. Med. 33, 1283–1291 (2018).