Skip to content

A tensorflow implementation of "Deep Convolutional Generative Adversarial Networks"

License

Notifications You must be signed in to change notification settings

vraebfdsb/DCGAN-tensorflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

73 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DCGAN in Tensorflow

Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networks. The referenced torch code can be found here.

alt tag

To avoid the fast convergence of D (discriminator) network, G (generatior) network is updatesd twice for each D network update which is a different from original paper.

Prerequisites

Usage

First, download dataset with:

$ mkdir data
$ python download.py --datasets celebA

To train a model with celebA dataset:

$ python main.py --dataset celebA --is_train True --is_crop True

To test with an existing model:

$ python main.py --dataset celebA --is_crop True

Or, you can use your own dataset (without central crop) by:

$ mkdir data/DATASET_NAME
... add images to data/DATASET_NAME ...
$ python main.py --dataset DATASET_NAME --is_train True
$ python main.py --dataset DATASET_NAME

Results

result

After 6th epoch:

result3

![result4](assets/test_2016-01-27 15:08:54.png)

With custom dataset (with high noises):

custom_result

More results can be found here.

Training details

d_loss

g_loss

d_hist

d__hist

Author

Taehoon Kim / @carpedm20

About

A tensorflow implementation of "Deep Convolutional Generative Adversarial Networks"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • JavaScript 49.7%
  • Python 25.0%
  • HTML 15.0%
  • CSS 10.3%