forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConstituentsQC500GeneratorAlgorithm.py
113 lines (99 loc) · 5.3 KB
/
ConstituentsQC500GeneratorAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System.Core")
AddReference("System.Collections")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm")
from System import *
from System.Collections.Generic import List
from QuantConnect import *
from QuantConnect.Algorithm import QCAlgorithm
from QuantConnect.Data.UniverseSelection import *
from math import ceil
import numpy as np
import pandas as pd
import scipy as sp
### <summary>
### Demonstration of how to estimate constituents of QC500 index based on the company fundamentals
### The algorithm creates a default tradable and liquid universe containing 500 US equities
### which are chosen at the first trading day of each month.
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="universes" />
### <meta name="tag" content="coarse universes" />
### <meta name="tag" content="fine universes" />
class ConstituentsQC500GeneratorAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2018, 1, 1) #Set Start Date
self.SetEndDate(2018, 1, 3) #Set End Date
self.SetCash(50000) #Set Strategy Cash
self.UniverseSettings.Resolution = Resolution.Daily
# this add universe method accepts two parameters:
# - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol>
# - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol>
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.spy = self.AddEquity("SPY", Resolution.Daily)
self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.At(0, 0), self.monthly_rebalance)
self.num_coarse = 1000
self.num_fine = 500
self.dollar_volume = {}
self.rebalance = True
def CoarseSelectionFunction(self, coarse):
if not self.rebalance: return []
# The stocks must have fundamental data
# The stock must have positive previous-day close price
# The stock must have positive volume on the previous trading day
filtered = [x for x in coarse if x.HasFundamentalData
and x.Volume > 0
and x.Price > 0]
# sort the stocks by dollar volume and take the top 1000
sort_filtered = sorted(filtered, key=lambda x: x.DollarVolume, reverse=True)[:self.num_coarse]
for i in sort_filtered:
self.dollar_volume[i.Symbol.Value] = i.DollarVolume
# return the symbol objects our sorted collection
return [x.Symbol for x in sort_filtered]
def FineSelectionFunction(self, fine):
if not self.rebalance: return []
self.rebalance = False
# The company's headquarter must in the U.S.
# The stock must be traded on either the NYSE or NASDAQ
# At least half a year since its initial public offering
# The stock's market cap must be greater than 500 million
filtered_fine = [x for x in fine if (x.CompanyReference.CountryId == "USA")
and (x.CompanyReference.PrimaryExchangeID == "NYS" or x.CompanyReference.PrimaryExchangeID == "NAS")
and ((self.Time - x.SecurityReference.IPODate).days > 180)
and x.EarningReports.BasicAverageShares.ThreeMonths * (x.EarningReports.BasicEPS.TwelveMonths*x.ValuationRatios.PERatio) > 5e8]
count = len(filtered_fine)
if count == 0: return []
# select stocks with top dollar volume in every single sector
for i in filtered_fine:
i.DollarVolume = self.dollar_volume[i.Symbol.Value]
percent = float(self.num_fine/count)
group_by_code = {}
top_list = []
for code in ["N", "M", "U", "T", "B", "I"]:
group_by_code[code] = list(filter(lambda x: x.CompanyReference.IndustryTemplateCode == code, filtered_fine))
top = sorted(group_by_code[code], key=lambda x: x.DollarVolume, reverse = True)[:ceil(len(group_by_code[code])*percent)]
top_list.append(top)
joined_list = top_list[0]
for ls in top_list[1:]:
joined_list += ls
self.symbols = [x.Symbol for x in joined_list][:self.num_fine]
self.Log(",".join(sorted(i.Value for i in self.symbols)))
return self.symbols
def OnData(self, data):
pass
def monthly_rebalance(self):
self.rebalance = True