forked from google-deepmind/optax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi.rst
793 lines (538 loc) · 12 KB
/
api.rst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
Common Optimizers
===================
.. currentmodule:: optax
.. autosummary::
adabelief
adafactor
adagrad
adam
adamw
adamax
adamaxw
amsgrad
fromage
lamb
lars
lion
noisy_sgd
novograd
optimistic_gradient_descent
dpsgd
radam
rmsprop
sgd
sm3
yogi
AdaBelief
~~~~~~~~~
.. autofunction:: adabelief
AdaGrad
~~~~~~~
.. autofunction:: adagrad
AdaFactor
~~~~~~~~~
.. autofunction:: adafactor
Adam
~~~~
.. autofunction:: adam
Adamax
~~~~~~
.. autofunction:: adamax
AdamaxW
~~~~~~~
.. autofunction:: adamaxw
AdamW
~~~~~
.. autofunction:: adamw
AMSGrad
~~~~~~~
.. autofunction:: amsgrad
Fromage
~~~~~~~
.. autofunction:: fromage
Lamb
~~~~
.. autofunction:: lamb
Lars
~~~~
.. autofunction:: lars
Lion
~~~~
.. autofunction:: lion
SM3
~~~
.. autofunction:: sm3
Noisy SGD
~~~~~~~~~
.. autofunction:: noisy_sgd
Novograd
~~~~~~~~~
.. autofunction:: novograd
Optimistic GD
~~~~~~~~~~~~~
.. autofunction:: optimistic_gradient_descent
Differentially Private SGD
~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: dpsgd
RAdam
~~~~~
.. autofunction:: radam
RMSProp
~~~~~~~
.. autofunction:: rmsprop
SGD
~~~
.. autofunction:: sgd
Yogi
~~~~
.. autofunction:: yogi
Optax Transformations
=====================
Gradient Transforms
-------------------
.. currentmodule:: optax
.. autosummary::
adaptive_grad_clip
add_decayed_weights
add_noise
AddDecayedWeightsState
additive_weight_decay
AdditiveWeightDecayState
AddNoiseState
apply_every
ApplyEvery
bias_correction
centralize
clip
clip_by_block_rms
clip_by_global_norm
ClipByGlobalNormState
ClipState
ema
EmaState
EmptyState
FactoredState
global_norm
GradientTransformation
GradientTransformationExtraArgs
identity
keep_params_nonnegative
NonNegativeParamsState
OptState
Params
scale
scale_by_adam
scale_by_adamax
scale_by_amsgrad
scale_by_belief
scale_by_factored_rms
scale_by_lion
scale_by_novograd
scale_by_optimistic_gradient
scale_by_param_block_norm
scale_by_param_block_rms
scale_by_radam
scale_by_rms
scale_by_rss
scale_by_schedule
scale_by_sm3
scale_by_stddev
scale_by_trust_ratio
scale_by_yogi
ScaleByAdamState
ScaleByAmsgradState
ScaleByLionState
ScaleByNovogradState
ScaleByRmsState
ScaleByRssState
ScaleByRStdDevState
ScaleByScheduleState
ScaleByTrustRatioState
ScaleBySM3State
ScaleState
stateless
stateless_with_tree_map
set_to_zero
trace
tree_map_params
TraceState
TransformInitFn
TransformUpdateFn
update_infinity_moment
update_moment
update_moment_per_elem_norm
Updates
zero_nans
ZeroNansState
with_extra_args_support
Optax Types
~~~~~~~~~~~~~~
.. autoclass:: GradientTransformation
:members:
.. autoclass:: TransformInitFn
:members:
.. autoclass:: TransformUpdateFn
:members:
.. autoclass:: OptState
:members:
.. autoclass:: Params
:members:
.. autoclass:: Updates
:members:
Optax Transforms and States
~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: adaptive_grad_clip
.. autoclass:: AdaptiveGradClipState
:members:
.. autofunction:: add_decayed_weights
.. autofunction:: add_noise
.. autoclass:: AddDecayedWeightsState
:members:
.. autofunction:: additive_weight_decay
.. autoclass:: AdditiveWeightDecayState
:members:
.. autoclass:: AddNoiseState
:members:
.. autofunction:: apply_every
.. autoclass:: ApplyEvery
:members:
.. autofunction:: centralize
.. autofunction:: clip
.. autofunction:: clip_by_block_rms
.. autofunction:: clip_by_global_norm
.. autoclass:: ClipByGlobalNormState
:members:
.. autoclass:: ClipState
:members:
.. autofunction:: ema
.. autoclass:: EmaState
:members:
.. autoclass:: EmptyState
:members:
.. autoclass:: FactoredState
:members:
.. autofunction:: global_norm
.. autofunction:: identity
.. autofunction:: keep_params_nonnegative
.. autoclass:: NonNegativeParamsState
:members:
.. autofunction:: scale
.. autofunction:: scale_by_adam
.. autofunction:: scale_by_adamax
.. autofunction:: scale_by_amsgrad
.. autofunction:: scale_by_belief
.. autofunction:: scale_by_factored_rms
.. autofunction:: scale_by_lion
.. autofunction:: scale_by_novograd
.. autofunction:: scale_by_param_block_norm
.. autofunction:: scale_by_param_block_rms
.. autofunction:: scale_by_radam
.. autofunction:: scale_by_rms
.. autofunction:: scale_by_rss
.. autofunction:: scale_by_schedule
.. autofunction:: scale_by_sm3
.. autofunction:: scale_by_stddev
.. autofunction:: scale_by_trust_ratio
.. autofunction:: scale_by_yogi
.. autoclass:: ScaleByAdamState
:members:
.. autoclass:: ScaleByAmsgradState
:members:
.. autoclass:: ScaleByLionState
:members:
.. autoclass:: ScaleByNovogradState
:members:
.. autoclass:: ScaleByRmsState
:members:
.. autoclass:: ScaleByRssState
:members:
.. autoclass:: ScaleByRStdDevState
:members:
.. autoclass:: ScaleByScheduleState
:members:
.. autoclass:: ScaleBySM3State
:members:
.. autoclass:: ScaleByTrustRatioState
:members:
.. autoclass:: ScaleState
:members:
.. autofunction:: set_to_zero
.. autofunction:: stateless
.. autofunction:: stateless_with_tree_map
.. autofunction:: trace
.. autoclass:: TraceState
:members:
.. autofunction:: zero_nans
.. autoclass:: ZeroNansState
:members:
Apply Updates
=============
.. autosummary::
apply_updates
incremental_update
periodic_update
apply_updates
~~~~~~~~~~~~~~~~~
.. autofunction:: apply_updates
incremental_update
~~~~~~~~~~~~~~~~~~
.. autofunction:: incremental_update
periodic_update
~~~~~~~~~~~~~~~
.. autofunction:: periodic_update
Combining Optimizers
=====================
.. currentmodule:: optax
.. autosummary::
chain
multi_transform
chain
~~~~~
.. autofunction:: chain
Multi Transform
~~~~~~~~~~~~~~~
.. autofunction:: multi_transform
.. autoclass:: MultiTransformState
:members:
Optimizer Wrappers
====================
.. currentmodule:: optax
.. autosummary::
apply_if_finite
ApplyIfFiniteState
flatten
lookahead
LookaheadParams
LookaheadState
masked
MaskedState
maybe_update
MaybeUpdateState
MultiSteps
MultiStepsState
ShouldSkipUpdateFunction
skip_large_updates
skip_not_finite
Apply if Finite
~~~~~~~~~~~~~~~~~
.. autofunction:: apply_if_finite
.. autoclass:: ApplyIfFiniteState
:members:
flatten
~~~~~~~~
.. autofunction:: flatten
Lookahead
~~~~~~~~~~~~~~~~~
.. autofunction:: lookahead
.. autoclass:: LookaheadParams
:members:
.. autoclass:: LookaheadState
:members:
Masked Update
~~~~~~~~~~~~~~
.. autofunction:: masked
.. autoclass:: MaskedState
:members:
Maybe Update
~~~~~~~~~~~~~~
.. autofunction:: maybe_update
.. autoclass:: MaybeUpdateState
:members:
Multi-step Update
~~~~~~~~~~~~~~~~~~~~
.. autoclass:: MultiSteps
:members:
.. autoclass:: MultiStepsState
:members:
Common Losses
===============
.. currentmodule:: optax
.. autosummary::
convex_kl_divergence
cosine_distance
cosine_similarity
ctc_loss
ctc_loss_with_forward_probs
hinge_loss
huber_loss
kl_divergence
l2_loss
log_cosh
sigmoid_binary_cross_entropy
smooth_labels
softmax_cross_entropy
softmax_cross_entropy_with_integer_labels
squared_error
Losses
~~~~~~~
.. autofunction:: convex_kl_divergence
.. autofunction:: cosine_distance
.. autofunction:: cosine_similarity
.. autofunction:: ctc_loss
.. autofunction:: ctc_loss_with_forward_probs
.. autofunction:: hinge_loss
.. autofunction:: huber_loss
.. autofunction:: kl_divergence
.. autofunction:: l2_loss
.. autofunction:: log_cosh
.. autofunction:: sigmoid_binary_cross_entropy
.. autofunction:: smooth_labels
.. autofunction:: softmax_cross_entropy
.. autofunction:: softmax_cross_entropy_with_integer_labels
.. autofunction:: squared_error
Linear Algebra Operators
========================
.. currentmodule:: optax
.. autosummary::
matrix_inverse_pth_root
multi_normal
power_iteration
multi_normal
~~~~~~~~~~~~
.. autofunction:: multi_normal
matrix_inverse_pth_root
~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: matrix_inverse_pth_root
Utilities for numerical stability
=================================
.. currentmodule:: optax
.. autosummary::
safe_int32_increment
safe_norm
safe_root_mean_squares
Numerics
~~~~~~~~
.. autofunction:: safe_int32_increment
.. autofunction:: safe_norm
.. autofunction:: safe_root_mean_squares
power_iteration
~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: power_iteration
Optimizer Schedules
=====================
.. currentmodule:: optax
.. autosummary::
constant_schedule
cosine_decay_schedule
cosine_onecycle_schedule
exponential_decay
join_schedules
linear_onecycle_schedule
linear_schedule
piecewise_constant_schedule
piecewise_interpolate_schedule
polynomial_schedule
sgdr_schedule
warmup_cosine_decay_schedule
warmup_exponential_decay_schedule
Schedule
InjectHyperparamsState
inject_hyperparams
Schedules
~~~~~~~~~
.. autofunction:: constant_schedule
.. autofunction:: cosine_decay_schedule
.. autofunction:: cosine_onecycle_schedule
.. autofunction:: exponential_decay
.. autofunction:: join_schedules
.. autofunction:: linear_onecycle_schedule
.. autofunction:: linear_schedule
.. autofunction:: piecewise_constant_schedule
.. autofunction:: piecewise_interpolate_schedule
.. autofunction:: polynomial_schedule
.. autofunction:: sgdr_schedule
.. autofunction:: warmup_cosine_decay_schedule
.. autofunction:: warmup_exponential_decay_schedule
.. autofunction:: inject_hyperparams
.. autoclass:: Schedule
:members:
.. autoclass:: InjectHyperparamsState
:members:
Second Order Optimization Utilities
=====================================
.. currentmodule:: optax
.. autosummary::
fisher_diag
hessian_diag
hvp
fisher_diag
~~~~~~~~~~~
.. autofunction:: fisher_diag
hessian_diag
~~~~~~~~~~~~~~~~~
.. autofunction:: hessian_diag
hvp
~~~~~~~~~~~
.. autofunction:: hvp
Control Variates
================
.. currentmodule:: optax
.. autosummary::
control_delta_method
control_variates_jacobians
moving_avg_baseline
control_delta_method
~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: control_delta_method
control_variates_jacobians
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: control_variates_jacobians
moving_avg_baseline
~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: moving_avg_baseline
Stochastic Gradient Estimators
==============================
.. currentmodule:: optax
.. autosummary::
measure_valued_jacobians
pathwise_jacobians
score_function_jacobians
measure_valued_jacobians
~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: measure_valued_jacobians
pathwise_jacobians
~~~~~~~~~~~~~~~~~~
.. autofunction:: pathwise_jacobians
score_function_jacobians
~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: score_function_jacobians
Privacy-Sensitive Optax Methods
==================================
.. currentmodule:: optax
.. autosummary::
DifferentiallyPrivateAggregateState
differentially_private_aggregate
differentially_private_aggregate
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: differentially_private_aggregate
.. autoclass:: DifferentiallyPrivateAggregateState
:members:
General Utilities
=====================================
.. currentmodule:: optax
.. autosummary::
multi_normal
scale_gradient
multi_normal
~~~~~~~~~~~~
.. autofunction:: multi_normal
scale_gradient
~~~~~~~~~~~~~~~~~
.. autofunction:: scale_gradient
🔧 Contrib
===============
.. currentmodule:: optax.contrib
.. autosummary::
mechanize
MechanicState
🚧 Experimental
===============
.. currentmodule:: optax.experimental
.. autosummary::
split_real_and_imaginary
SplitRealAndImaginaryState
Complex-Valued Optimization
~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: split_real_and_imaginary
.. autoclass:: SplitRealAndImaginaryState
:members: