forked from PaddlePaddle/PaddleGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcyclegan_cityscapes.yaml
117 lines (111 loc) · 2.48 KB
/
cyclegan_cityscapes.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
epochs: 200
output_dir: output_dir
find_unused_parameters: True
model:
name: CycleGANModel
generator:
name: ResnetGenerator
output_nc: 3
n_blocks: 9
ngf: 64
use_dropout: False
norm_type: instance
input_nc: 3
discriminator:
name: NLayerDiscriminator
ndf: 64
n_layers: 3
norm_type: instance
input_nc: 3
cycle_criterion:
name: L1Loss
idt_criterion:
name: L1Loss
loss_weight: 0.5
gan_criterion:
name: GANLoss
gan_mode: lsgan
dataset:
train:
name: UnpairedDataset
dataroot_a: data/cityscapes/trainA
dataroot_b: data/cityscapes/trainB
num_workers: 0
batch_size: 1
is_train: True
max_size: inf
preprocess:
- name: LoadImageFromFile
key: A
- name: LoadImageFromFile
key: B
- name: Transforms
input_keys: [A, B]
pipeline:
- name: Resize
size: [286, 286]
interpolation: 'bicubic' #cv2.INTER_CUBIC
keys: ['image', 'image']
- name: RandomCrop
size: [256, 256]
keys: ['image', 'image']
- name: RandomHorizontalFlip
prob: 0.5
keys: ['image', 'image']
- name: Transpose
keys: ['image', 'image']
- name: Normalize
mean: [127.5, 127.5, 127.5]
std: [127.5, 127.5, 127.5]
keys: ['image', 'image']
test:
name: UnpairedDataset
dataroot_a: data/cityscapes/testA
dataroot_b: data/cityscapes/testB
num_workers: 0
batch_size: 1
max_size: inf
is_train: False
preprocess:
- name: LoadImageFromFile
key: A
- name: LoadImageFromFile
key: B
- name: Transforms
input_keys: [A, B]
pipeline:
- name: Resize
size: [256, 256]
interpolation: 'bicubic' #cv2.INTER_CUBIC
keys: ['image', 'image']
- name: Transpose
keys: ['image', 'image']
- name: Normalize
mean: [127.5, 127.5, 127.5]
std: [127.5, 127.5, 127.5]
keys: ['image', 'image']
lr_scheduler:
name: LinearDecay
learning_rate: 0.0002
start_epoch: 100
decay_epochs: 100
# will get from real dataset
iters_per_epoch: 1
optimizer:
optimG:
name: Adam
net_names:
- netG_A
- netG_B
beta1: 0.5
optimD:
name: Adam
net_names:
- netD_A
- netD_B
beta1: 0.5
log_config:
interval: 100
visiual_interval: 500
snapshot_config:
interval: 5