forked from cran/IMaGES
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIMaGES.html
212 lines (175 loc) · 77.1 KB
/
IMaGES.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="author" content="Noah Frazier-Logue, Stephen José Hanson" />
<meta name="date" content="2018-12-14" />
<title>IMaGES R Package and Algorithm</title>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
div.sourceCode { overflow-x: auto; }
table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
margin: 0; padding: 0; vertical-align: baseline; border: none; }
table.sourceCode { width: 100%; line-height: 100%; }
td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
td.sourceCode { padding-left: 5px; }
code > span.kw { color: #007020; font-weight: bold; } /* Keyword */
code > span.dt { color: #902000; } /* DataType */
code > span.dv { color: #40a070; } /* DecVal */
code > span.bn { color: #40a070; } /* BaseN */
code > span.fl { color: #40a070; } /* Float */
code > span.ch { color: #4070a0; } /* Char */
code > span.st { color: #4070a0; } /* String */
code > span.co { color: #60a0b0; font-style: italic; } /* Comment */
code > span.ot { color: #007020; } /* Other */
code > span.al { color: #ff0000; font-weight: bold; } /* Alert */
code > span.fu { color: #06287e; } /* Function */
code > span.er { color: #ff0000; font-weight: bold; } /* Error */
code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
code > span.cn { color: #880000; } /* Constant */
code > span.sc { color: #4070a0; } /* SpecialChar */
code > span.vs { color: #4070a0; } /* VerbatimString */
code > span.ss { color: #bb6688; } /* SpecialString */
code > span.im { } /* Import */
code > span.va { color: #19177c; } /* Variable */
code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code > span.op { color: #666666; } /* Operator */
code > span.bu { } /* BuiltIn */
code > span.ex { } /* Extension */
code > span.pp { color: #bc7a00; } /* Preprocessor */
code > span.at { color: #7d9029; } /* Attribute */
code > span.do { color: #ba2121; font-style: italic; } /* Documentation */
code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
</style>
<link href="data:text/css;charset=utf-8,body%20%7B%0Abackground%2Dcolor%3A%20%23fff%3B%0Amargin%3A%201em%20auto%3B%0Amax%2Dwidth%3A%20700px%3B%0Aoverflow%3A%20visible%3B%0Apadding%2Dleft%3A%202em%3B%0Apadding%2Dright%3A%202em%3B%0Afont%2Dfamily%3A%20%22Open%20Sans%22%2C%20%22Helvetica%20Neue%22%2C%20Helvetica%2C%20Arial%2C%20sans%2Dserif%3B%0Afont%2Dsize%3A%2014px%3B%0Aline%2Dheight%3A%201%2E35%3B%0A%7D%0A%23header%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0A%23TOC%20%7B%0Aclear%3A%20both%3B%0Amargin%3A%200%200%2010px%2010px%3B%0Apadding%3A%204px%3B%0Awidth%3A%20400px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Aborder%2Dradius%3A%205px%3B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Afont%2Dsize%3A%2013px%3B%0Aline%2Dheight%3A%201%2E3%3B%0A%7D%0A%23TOC%20%2Etoctitle%20%7B%0Afont%2Dweight%3A%20bold%3B%0Afont%2Dsize%3A%2015px%3B%0Amargin%2Dleft%3A%205px%3B%0A%7D%0A%23TOC%20ul%20%7B%0Apadding%2Dleft%3A%2040px%3B%0Amargin%2Dleft%3A%20%2D1%2E5em%3B%0Amargin%2Dtop%3A%205px%3B%0Amargin%2Dbottom%3A%205px%3B%0A%7D%0A%23TOC%20ul%20ul%20%7B%0Amargin%2Dleft%3A%20%2D2em%3B%0A%7D%0A%23TOC%20li%20%7B%0Aline%2Dheight%3A%2016px%3B%0A%7D%0Atable%20%7B%0Amargin%3A%201em%20auto%3B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dcolor%3A%20%23DDDDDD%3B%0Aborder%2Dstyle%3A%20outset%3B%0Aborder%2Dcollapse%3A%20collapse%3B%0A%7D%0Atable%20th%20%7B%0Aborder%2Dwidth%3A%202px%3B%0Apadding%3A%205px%3B%0Aborder%2Dstyle%3A%20inset%3B%0A%7D%0Atable%20td%20%7B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dstyle%3A%20inset%3B%0Aline%2Dheight%3A%2018px%3B%0Apadding%3A%205px%205px%3B%0A%7D%0Atable%2C%20table%20th%2C%20table%20td%20%7B%0Aborder%2Dleft%2Dstyle%3A%20none%3B%0Aborder%2Dright%2Dstyle%3A%20none%3B%0A%7D%0Atable%20thead%2C%20table%20tr%2Eeven%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Ap%20%7B%0Amargin%3A%200%2E5em%200%3B%0A%7D%0Ablockquote%20%7B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Apadding%3A%200%2E25em%200%2E75em%3B%0A%7D%0Ahr%20%7B%0Aborder%2Dstyle%3A%20solid%3B%0Aborder%3A%20none%3B%0Aborder%2Dtop%3A%201px%20solid%20%23777%3B%0Amargin%3A%2028px%200%3B%0A%7D%0Adl%20%7B%0Amargin%2Dleft%3A%200%3B%0A%7D%0Adl%20dd%20%7B%0Amargin%2Dbottom%3A%2013px%3B%0Amargin%2Dleft%3A%2013px%3B%0A%7D%0Adl%20dt%20%7B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Aul%20%7B%0Amargin%2Dtop%3A%200%3B%0A%7D%0Aul%20li%20%7B%0Alist%2Dstyle%3A%20circle%20outside%3B%0A%7D%0Aul%20ul%20%7B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0Apre%2C%20code%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0Aborder%2Dradius%3A%203px%3B%0Acolor%3A%20%23333%3B%0Awhite%2Dspace%3A%20pre%2Dwrap%3B%20%0A%7D%0Apre%20%7B%0Aborder%2Dradius%3A%203px%3B%0Amargin%3A%205px%200px%2010px%200px%3B%0Apadding%3A%2010px%3B%0A%7D%0Apre%3Anot%28%5Bclass%5D%29%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Acode%20%7B%0Afont%2Dfamily%3A%20Consolas%2C%20Monaco%2C%20%27Courier%20New%27%2C%20monospace%3B%0Afont%2Dsize%3A%2085%25%3B%0A%7D%0Ap%20%3E%20code%2C%20li%20%3E%20code%20%7B%0Apadding%3A%202px%200px%3B%0A%7D%0Adiv%2Efigure%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0Aimg%20%7B%0Abackground%2Dcolor%3A%20%23FFFFFF%3B%0Apadding%3A%202px%3B%0Aborder%3A%201px%20solid%20%23DDDDDD%3B%0Aborder%2Dradius%3A%203px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Amargin%3A%200%205px%3B%0A%7D%0Ah1%20%7B%0Amargin%2Dtop%3A%200%3B%0Afont%2Dsize%3A%2035px%3B%0Aline%2Dheight%3A%2040px%3B%0A%7D%0Ah2%20%7B%0Aborder%2Dbottom%3A%204px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Apadding%2Dbottom%3A%202px%3B%0Afont%2Dsize%3A%20145%25%3B%0A%7D%0Ah3%20%7B%0Aborder%2Dbottom%3A%202px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Afont%2Dsize%3A%20120%25%3B%0A%7D%0Ah4%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23f7f7f7%3B%0Amargin%2Dleft%3A%208px%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Ah5%2C%20h6%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23ccc%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Aa%20%7B%0Acolor%3A%20%230033dd%3B%0Atext%2Ddecoration%3A%20none%3B%0A%7D%0Aa%3Ahover%20%7B%0Acolor%3A%20%236666ff%3B%20%7D%0Aa%3Avisited%20%7B%0Acolor%3A%20%23800080%3B%20%7D%0Aa%3Avisited%3Ahover%20%7B%0Acolor%3A%20%23BB00BB%3B%20%7D%0Aa%5Bhref%5E%3D%22http%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0Aa%5Bhref%5E%3D%22https%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0A%0Acode%20%3E%20span%2Ekw%20%7B%20color%3A%20%23555%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Edt%20%7B%20color%3A%20%23902000%3B%20%7D%20%0Acode%20%3E%20span%2Edv%20%7B%20color%3A%20%2340a070%3B%20%7D%20%0Acode%20%3E%20span%2Ebn%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Efl%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Ech%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Est%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Eco%20%7B%20color%3A%20%23888888%3B%20font%2Dstyle%3A%20italic%3B%20%7D%20%0Acode%20%3E%20span%2Eot%20%7B%20color%3A%20%23007020%3B%20%7D%20%0Acode%20%3E%20span%2Eal%20%7B%20color%3A%20%23ff0000%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Efu%20%7B%20color%3A%20%23900%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%20code%20%3E%20span%2Eer%20%7B%20color%3A%20%23a61717%3B%20background%2Dcolor%3A%20%23e3d2d2%3B%20%7D%20%0A" rel="stylesheet" type="text/css" />
</head>
<body>
<h1 class="title toc-ignore">IMaGES R Package and Algorithm</h1>
<h4 class="author"><em>Noah Frazier-Logue, Stephen José Hanson</em></h4>
<h4 class="date"><em>2018-12-14</em></h4>
<p><strong>Version</strong> 0.1</p>
<p><strong>License</strong> GPL (>= 2)</p>
<p><strong>LazyData</strong> true</p>
<p><strong>Repository</strong> CRAN</p>
<p><strong>URL</strong> <a href="https://github.com/noahfl/IMaGES" class="uri">https://github.com/noahfl/IMaGES</a></p>
<p><strong>BugReports</strong> <a href="https://github.com/noahfl/IMaGES/issues" class="uri">https://github.com/noahfl/IMaGES/issues</a></p>
<p><strong>NeedsCompilation</strong> Yes</p>
<div id="images-algorithm" class="section level2">
<h2>IMaGES Algorithm</h2>
<p>This package is an implementation of the IMaGES algorithm of Ramsey, Hanson, Hanson, Halchenko, Poldrack, Glymour (2010) and is adapted from ‘GES’ as implemented in the ‘pcalg’ package. IMaGES (Independent Multi-sample Greedy Equivalence Search) is a score-based algorithm that greedily maximizes a score function similar to the one used in the pcalg implementation of GES. It modifies the scoring by creating a global score across all datasets and uses this score to determine which step from the individual datasets best represents all of the datasets. It accomplishes this by using forward, backward, and turning steps as described below:</p>
<ul>
<li><p><strong>Forward phase</strong> In the forward phase, IMaGES moves through the space of essential graphs in steps that correspond to the addition of a single edge in the space of DAGs; the phase is aborted as soon as the score cannot be augmented any more.</p></li>
<li><p><strong>Backward phase</strong> In the backward phase, the algorithm performs moves that correspond to the removal of a single edge in the space of DAGs until the score cannot be augmented any more.</p></li>
<li><p><strong>Turning phase</strong> In the turning phase, the algorithm performs moves that correspond to the reversal of a single arrow in the space of DAGs until the score cannot be augmented any more.</p></li>
</ul>
<p>During each step, the IMaGES algorithm simulates the addition, deletion, or turning of an edge for each individual dataset. The step that most augments the score (each edge is assigned a SEM BIC score) for the individual dataset is selected, and the global step across all datasets is selected by finding the most commonly recommended step. The algorithm then executes that step and updated the IMScore accordingly. This repeats for (number of nodes)**2 or until the algorithm detects that no steps augment the score for five consecutive iterations (also known as ‘early stopping’).</p>
<p>These operations are carried out and result in a global representative graph and a Markov equivalence class.</p>
<div id="images-in-r" class="section level3">
<h3>IMaGES in R</h3>
<div id="description" class="section level4">
<h4>Description</h4>
<p>Running this on the provided sample data returns an IMaGES object with a named list containing:</p>
<ul>
<li><p><strong>.global</strong> a named list containing <code>.graph</code>, the global graphNEL object, and <code>.params</code>, the structural equation modeling data for the global graph</p></li>
<li><p><strong>.single.graphs</strong> a list containing named lists of the same structure as above that corresponds to each individual dataset passsed into IMaGES</p></li>
<li><p><strong>.markovs</strong> a list containing named lists of the same structure as above that corresponds to each Markov equivalence class (the size of which is specified by the user)</p></li>
<li><p><strong>.means</strong> a list containing the mean values for the structural equation modeling data for each edge in the graph</p></li>
<li><p><strong>.std.errs</strong> a list containing the standard errors for the structural equation modeling data for each edge in the graph</p></li>
</ul>
</div>
<div id="usage" class="section level4">
<h4>Usage</h4>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">require</span>(IMaGES)
<span class="kw">data</span>(IMData)
<span class="co">#run IMaGES</span>
im.fits <-<span class="st"> </span><span class="kw">IMaGES</span>(<span class="dt">matrices=</span>IMData, <span class="dt">penalty=</span><span class="dv">3</span>, <span class="dt">num.markovs=</span><span class="dv">5</span>, <span class="dt">use.verbose=</span><span class="ot">FALSE</span>)
<span class="co">#> [1] "Running..."</span>
<span class="co">#> [1] "Stopping early. IMaGES run has converged on a representative graph."</span>
<span class="co">#> [1] "Done with IMaGES run."</span>
<span class="co">#> [1] "Final IMScore: 220936.078265305"</span></code></pre></div>
</div>
</div>
<div id="plotall" class="section level3">
<h3>plotAll</h3>
<div id="description-1" class="section level4">
<h4>Description</h4>
<p>This function takes the object returned by an IMaGES run and plots the global structure with its structural equation modeling data, as well as the structural equation modeling data for each dataset imposed on the global structure. The function determines the dimensions that most closely represent a square and plots the graphs in that fashion.</p>
</div>
<div id="usage-1" class="section level4">
<h4>Usage</h4>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">require</span>(IMaGES)
## Load predefined data
<span class="kw">data</span>(IMData)
<span class="co">#run IMaGES</span>
im.fits <-<span class="st"> </span><span class="kw">IMaGES</span>(<span class="dt">matrices=</span>IMData, <span class="dt">penalty=</span><span class="dv">3</span>, <span class="dt">num.markovs=</span><span class="dv">5</span>, <span class="dt">use.verbose=</span><span class="ot">FALSE</span>)
<span class="co">#> [1] "Running..."</span>
<span class="co">#> [1] "Stopping early. IMaGES run has converged on a representative graph."</span>
<span class="co">#> [1] "Done with IMaGES run."</span>
<span class="co">#> [1] "Final IMScore: 220936.078265305"</span>
<span class="co">#plot global graph and all individual graphs with own SEM data</span>
<span class="kw">par</span>(<span class="dt">mar=</span><span class="kw">c</span>(<span class="dv">2</span>,<span class="dv">2</span>,<span class="dv">2</span>,<span class="dv">2</span>))
<span class="kw">plotAll</span>(im.fits)</code></pre></div>
<p><img src="" /><!-- --></p>
</div>
</div>
<div id="plotmarkovs" class="section level3">
<h3>plotMarkovs</h3>
<div id="description-2" class="section level4">
<h4>Description</h4>
<p>This function takes the object returned by an IMaGES run and plots the global structure with its structural equation modeling data, as well as the structural equation modeling data for each Markov equivalence class and their respective structures. The function determines the dimensions that most closely represent a square and plots the graphs in that fashion.</p>
</div>
<div id="usage-2" class="section level4">
<h4>Usage</h4>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">require</span>(IMaGES)
## Load predefined data
<span class="kw">data</span>(IMData)
<span class="co">#run IMaGES</span>
im.fits <-<span class="st"> </span><span class="kw">IMaGES</span>(<span class="dt">matrices=</span>IMData, <span class="dt">penalty=</span><span class="dv">3</span>, <span class="dt">num.markovs=</span><span class="dv">5</span>, <span class="dt">use.verbose=</span><span class="ot">FALSE</span>)
<span class="co">#> [1] "Running..."</span>
<span class="co">#> [1] "Stopping early. IMaGES run has converged on a representative graph."</span>
<span class="co">#> [1] "Done with IMaGES run."</span>
<span class="co">#> [1] "Final IMScore: 220936.078265305"</span>
<span class="co">#plot global graph alongside Markov equivalence class</span>
<span class="kw">plotMarkovs</span>(im.fits)</code></pre></div>
<p><img src="" /><!-- --></p>
</div>
</div>
<div id="plotimgraph" class="section level3">
<h3>plotIMGraph</h3>
<div id="description-3" class="section level4">
<h4>Description</h4>
<p>This function takes a graph object returned from IMaGES (takes the form of a named list containing <code>.graph</code> and <code>.params</code>) and plots it. Using <code>plotAll</code> or <code>plotMarkovs</code> is recommended unless you only want to see one specific graph.</p>
</div>
<div id="usage-3" class="section level4">
<h4>Usage</h4>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">require</span>(IMaGES)
## Load predefined data
<span class="kw">data</span>(IMData)
<span class="co">#run IMaGES</span>
im.fits <-<span class="st"> </span><span class="kw">IMaGES</span>(<span class="dt">matrices=</span>IMData, <span class="dt">penalty=</span><span class="dv">3</span>, <span class="dt">num.markovs=</span><span class="dv">5</span>, <span class="dt">use.verbose=</span><span class="ot">FALSE</span>)
<span class="co">#> [1] "Running..."</span>
<span class="co">#> [1] "Stopping early. IMaGES run has converged on a representative graph."</span>
<span class="co">#> [1] "Done with IMaGES run."</span>
<span class="co">#> [1] "Final IMScore: 220936.078265305"</span>
<span class="co">#plot individual graph</span>
<span class="kw">plotIMGraph</span>(im.fits$.single.graph[[<span class="dv">1</span>]])</code></pre></div>
<p><img src="" /><!-- --></p>
</div>
</div>
</div>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>