-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiSymmEig.cpp
482 lines (366 loc) · 11.4 KB
/
multiSymmEig.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#include <mex.h>
#include <lapack.h>
#include <algorithm>
#include <limits>
#include <memory>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>
#ifdef _OPENMP
#include <omp.h>
#else // ! defined(_OPENMP)
#define omp_get_thread_num() 0
#define omp_get_num_threads() 1
#endif // _OPENMP
class EVProblem
{
public:
bool solve(const mwSignedIndex n, const double* A)
{
resize(n);
A_.assign(A, n, n);
return solve();
}
void eigenValues(double* pr) const
{
const auto& R = E_.Lambda_.Data();
std::copy(R.begin(), R.end(), pr);
}
void eigenVectors(double* ev) const
{
const auto& V = E_.Vectors_.Data();
std::copy(V.begin(), V.end(), ev);
}
private:
template <typename T = double>
class Array {
public:
void resize(const mwSignedIndex nRows,
const mwSignedIndex nCols = 1)
{
x_.resize(nRows * nCols, T(0));
ld_ = nRows;
}
void assign(const T* x,
const mwSignedIndex nRows,
const mwSignedIndex nCols = 1)
{
std::copy(x, x + (nRows * nCols), x_.begin());
ld_ = nRows;
}
const std::vector<T>& Data() const { return x_; }
T* Data() { return x_.data(); }
mwSignedIndex LD () const { return ld_; }
private:
std::vector<T> x_;
mwSignedIndex ld_;
};
struct EigenResults {
Array<> Lambda_;
Array<> Vectors_;
void resize(const mwSignedIndex n)
{
Lambda_ .resize(n);
Vectors_.resize(n, n);
}
};
struct ProblemCharacteristics {
const char job_z_ { 'V' }; // Do compute eigenvectors
const char range_ { 'A' }; // Compute all eigenvalues
const char uplo_ { 'L' }; // Reference lower triangle
const double vl_ { - std::numeric_limits<double>::max() };
const double vu_ { std::numeric_limits<double>::max() };
// Work arrays
Array<> Work_;
Array<mwSignedIndex> IWork_;
Array<mwSignedIndex> ISuppZ_;
void resize(const mwSignedIndex n,
const mwSignedIndex lwork,
const mwSignedIndex liwork)
{
Work_ .resize(lwork);
IWork_ .resize(liwork);
ISuppZ_.resize(2 * n);
}
};
// System matrix.
Array<> A_;
// Numerical output
EigenResults E_;
//
ProblemCharacteristics C_;
bool resize(const mwSignedIndex n)
{
A_.resize(n, n);
E_.resize(n);
mwSignedIndex LWork, LIWork;
if (optimalWorkSize(n, LWork, LIWork)) {
C_.resize(n, LWork, LIWork);
return true;
}
return false;
}
bool optimalWorkSize(const mwSignedIndex n,
mwSignedIndex& lwork,
mwSignedIndex& liwork) const
{
mwSignedIndex N = n;
auto JobZ = C_.job_z_;
auto Range = C_.range_;
auto UpLo = C_.uplo_;
double* A = nullptr; mwSignedIndex lda = n;
auto vl = C_.vl_;
auto vu = C_.vu_;
mwSignedIndex il = 1;
mwSignedIndex iu = n;
double abstol;
{
char param[] = "Safe minimum";
abstol = dlamch(param);
}
mwSignedIndex m;
double* w = nullptr;
double* z = nullptr;
mwSignedIndex ldz = n;
mwSignedIndex* isuppz = nullptr;
double work [1];
mwSignedIndex iwork[1];
mwSignedIndex info = 0;
lwork = -1;
liwork = -1;
dsyevr(&JobZ, &Range, &UpLo,
&N, A, &lda, &vl, &vu, &il, &iu,
&abstol, &m, w, z, &ldz, isuppz,
work, &lwork, iwork, &liwork,
&info);
if (info == 0) {
lwork = static_cast<mwSignedIndex>(work[0]);
liwork = iwork[0];
}
return info == 0;
}
bool solve()
{
auto JobZ = C_.job_z_;
auto Range = C_.range_;
auto UpLo = C_.uplo_;
auto N = A_.LD();
auto* A = A_.Data();
auto lda = A_.LD();
auto vl = C_.vl_;
auto vu = C_.vu_;
mwSignedIndex il = 1, iu = N;
double abstol;
{
char param[] = "Safe minimum";
abstol = dlamch(param);
}
auto* w = E_.Lambda_.Data();
auto* z = E_.Vectors_.Data();
auto ldz = E_.Vectors_.LD();
auto* isuppz = C_.ISuppZ_.Data();
auto* work = C_.Work_.Data();
auto lwork = C_.Work_.LD();
auto* iwork = C_.IWork_.Data();
auto liwork = C_.IWork_.LD();
mwSignedIndex m, info = 0;
dsyevr(&JobZ, &Range, &UpLo,
&N, A, &lda, &vl, &vu, &il, &iu,
&abstol, &m, w, z, &ldz, isuppz,
work, &lwork, iwork, &liwork,
&info);
return info == 0;
}
};
class BlockBoundaries
{
public:
explicit BlockBoundaries(const mxArray* BSZ)
{
const auto nblk = mxGetNumberOfElements(BSZ);
if (mxIsInt32(BSZ)) { construct<int> (BSZ, nblk); }
else if (mxIsDouble(BSZ)) { construct<double>(BSZ, nblk); }
else {
mexErrMsgTxt("SZ must be DOUBLE or INT32");
}
}
using BlockID = std::size_t;
using SizeType = std::size_t;
BlockID numBlocks() const { return p1_.size() - 1; }
SizeType n1() const { return p1_.back(); }
SizeType n2() const { return p2_.back(); }
SizeType p1(const BlockID blk) const
{
mxAssert (blk < numBlocks(), "Internal Error");
return p1_[blk];
}
SizeType p2(const BlockID blk) const
{
mxAssert (blk < numBlocks(), "Internal Error");
return p2_[blk];
}
SizeType size(const BlockID blk) const
{
mxAssert (blk < numBlocks(), "Internal Error");
return p1_[blk + 1] - p1_[blk + 0];
}
private:
using SizeVector = std::vector<SizeType>;
SizeVector p1_;
SizeVector p2_;
template <typename BlockSizeType>
void construct(const mxArray* BSZ,
const std::size_t nblk)
{
p1_.reserve(nblk + 1); p1_.push_back(0);
p2_.reserve(nblk + 1); p2_.push_back(0);
auto bsz = static_cast<const BlockSizeType*>(mxGetData(BSZ));
for (auto end = bsz + nblk; bsz != end; ++bsz) {
const auto n = static_cast<SizeType>(*bsz);
p1_.push_back(p1_.back() + n);
p2_.push_back(p2_.back() + (n * n));
}
}
};
class MXDoubleVector
{
public:
explicit MXDoubleVector(const mwSize n)
: x_(mxCreateDoubleMatrix(n, 1, mxREAL))
{}
double* Data(const mwSize i = 0)
{
mxAssert (i < Size(), "Internal Error");
return mxGetPr(Array()) + i;
}
mxArray* ReleaseMXArray()
{
return x_.release();
}
std::size_t Size() const
{
return mxGetNumberOfElements(Array());
}
private:
struct Delete {
void operator()(mxArray* x)
{
if (x != nullptr) {
mxDestroyArray(x);
}
}
};
using MXArray = std::unique_ptr<mxArray, Delete>;
MXArray x_;
mxArray* Array() const
{
return x_.get();
}
};
class MEXResult
{
public:
MEXResult(const int nlhs,
const BlockBoundaries& blocks)
: blocks_(blocks)
{
mxAssert ((nlhs == 1) || (nlhs == 2),
"Must be one or two return values.");
result_.emplace_back(blocks_.n1());
if (nlhs > 1) {
result_.emplace_back(blocks_.n2());
}
}
double* EigenValues(const BlockBoundaries::BlockID blockID)
{
mxAssert (blockID < blocks_.numBlocks(), "Internal Error");
return result_[Lambda].Data(blocks_.p1(blockID));
}
double* EigenVectors(const BlockBoundaries::BlockID blockID)
{
mxAssert (blockID < blocks_.numBlocks(), "Internal Error");
if (result_.size() < (InvSubspace + 1)) {
return nullptr;
}
return result_[InvSubspace].Data(blocks_.p2(blockID));
}
void ExtractResultArrays(mxArray* plhs[])
{
for (auto& x : result_) {
*plhs++ = x.ReleaseMXArray();
}
}
private:
enum { Lambda = 0 ,
InvSubspace = 1 };
const BlockBoundaries& blocks_;
std::vector<MXDoubleVector> result_;
};
namespace {
// d = multiSymmEig(A, sz)
// [d, v] = multiSymmEig(A, sz)
bool args_ok(const int nlhs, const int nrhs, const mxArray* prhs[])
{
auto ok = nrhs == 2;
ok = ok && ((nlhs == 1) || (nlhs == 2));
ok = ok && (!mxIsEmpty(prhs[0]) && mxIsDouble(prhs[0]));
ok = ok && (!mxIsEmpty(prhs[1]) &&
(mxIsDouble(prhs[1]) || mxIsInt32(prhs[1])));
return ok;
}
void solveEigenProblem(const BlockBoundaries::BlockID blockID,
const double* const Ai,
const mwSignedIndex n,
MEXResult& result)
{
#define VERBOSE_PRINT 0
#if VERBOSE_PRINT
mexPrintf("Subproblem %llu, Size %lld, Thread %d/%d\n",
static_cast<unsigned long long>(blockID),
static_cast<long long>(n),
omp_get_thread_num() + 1, omp_get_num_threads());
#endif // VERBOSE_PRINT
auto p = EVProblem();
if (p.solve(n, Ai)) {
p.eigenValues(result.EigenValues(blockID));
if (auto v = result.EigenVectors(blockID)) {
p.eigenVectors(v);
}
}
}
} // Anonymous
// d = multiSymmEig(A, sz)
// [d, v] = multiSymmEig(A, sz)
void mexFunction(int nlhs, mxArray* plhs[],
int nrhs, const mxArray* prhs[])
{
if (args_ok(nlhs, nrhs, prhs)) {
const auto blocks = BlockBoundaries(prhs[1]);
auto result = MEXResult(nlhs, blocks);
const double* const A = mxGetPr(prhs[0]);
#pragma omp parallel \
if ((blocks.numBlocks() > (50 * omp_get_num_threads())))
#pragma omp single
{
for (decltype(blocks.numBlocks())
b = 0, nb = blocks.numBlocks();
b < nb; ++b)
{
const double* const Ai = A + blocks.p2(b);
const auto n = blocks.size(b);
#pragma omp task
solveEigenProblem(b, Ai, n, result);
}
}
result.ExtractResultArrays(plhs);
}
else {
const std::string fn = mexFunctionName();
std::ostringstream msg;
msg << "Syntax:\n\t"
<< " d = " << fn << "(A, sz) % or\n\t"
<< "[d, v] = " << fn << "(A, sz)";
mexErrMsgTxt(msg.str().c_str());
}
}