From 4cdfc96038e5b82a3e847c23f006a10d290a0655 Mon Sep 17 00:00:00 2001 From: Vadim Markovtsev Date: Tue, 28 Feb 2017 15:46:37 +0100 Subject: [PATCH] Simplify and improve fastprep.mk There is no need in building Tensorflow from scratch, fastprep successfully links with the Python wrapper from pip and system protobuf v3. Tested this on Ubuntu. --- swivel/fastprep.mk | 79 +++++++++++++++------------------------------- 1 file changed, 26 insertions(+), 53 deletions(-) diff --git a/swivel/fastprep.mk b/swivel/fastprep.mk index bbc4a1736a7..b1798d0b68a 100644 --- a/swivel/fastprep.mk +++ b/swivel/fastprep.mk @@ -16,50 +16,16 @@ # limitations under the License. - # This makefile builds "fastprep", a faster version of prep.py that can be used -# to build training data for Swivel. Building "fastprep" is a bit more -# involved: you'll need to pull and build the Tensorflow source, and then build -# and install compatible protobuf software. We've tested this with Tensorflow -# version 0.7. -# -# = Step 1. Pull and Build Tensorflow. = -# -# These instructions are somewhat abridged; for pre-requisites and the most -# up-to-date instructions, refer to: -# -# -# -# To build the Tensorflow components required for "fastpret", you'll need to -# install Bazel, Numpy, Swig, and Python development headers as described in at -# the above URL. Run the "configure" script as appropriate for your -# environment and then build the "build_pip_package" target: -# -# bazel build -c opt [--config=cuda] //tensorflow/tools/pip_package:build_pip_package -# -# This will generate the Tensorflow headers and libraries necessary for -# "fastprep". -# +# to build training data for Swivel. # -# = Step 2. Build and Install Compatible Protobuf Libraries = +# = Step 1. Install protobuf v3 = # -# "fastprep" also needs compatible protocol buffer libraries, which you can -# build from the protobuf implementation included with the Tensorflow -# distribution: +# Ubuntu 16.10+: sudo apt install libprotobuf-dev +# Ubuntu 16.04: https://launchpad.net/~maarten-fonville/+archive/ubuntu/ppa + replace xenial with yakkety in /etc/apt/sources.list.d/maarten-fonville-ubuntu-ppa-xenial.list +# macOS: brew install protobuf # -# cd ${TENSORFLOW_SRCDIR}/google/protobuf -# ./autogen.sh -# ./configure --prefix=${HOME} # ...or whatever -# make -# make install # ...or maybe "sudo make install" -# -# This will install the headers and libraries appropriately. -# -# -# = Step 3. Build "fastprep". = -# -# Finally modify this file (if necessary) to update PB_DIR and TF_DIR to refer -# to appropriate locations, and: +# = Step 2. Build "fastprep". = # # make -f fastprep.mk # @@ -68,20 +34,27 @@ # matrices and other files necessary to train a Swivel matrix. -# The root directory where the Google Protobuf software is installed. -# Alternative locations might be "/usr" or "/usr/local". -PB_DIR=$(HOME) +CXXFLAGS=-std=c++11 -march=native -g -O2 -flto -Wall -I. +LDLIBS=-lprotobuf -pthread -lm + +FETCHER=curl -L -o +TF_URL=https://github.com/tensorflow/tensorflow/raw/master +PROTOC=protoc + + +%.proto: tensorflow/core/example + $(FETCHER) $@ $(TF_URL)/$@ -# Assuming you've got the Tensorflow source unpacked and built in ${HOME}/src: -TF_DIR=$(HOME)/src/tensorflow +%.pb.cc: %.proto + $(PROTOC) --cpp_out=. $< -PB_INCLUDE=$(PB_DIR)/include -TF_INCLUDE=$(TF_DIR)/bazel-genfiles -CXXFLAGS=-std=c++11 -m64 -mavx -g -Ofast -Wall -I$(TF_INCLUDE) -I$(PB_INCLUDE) +fastprep: fastprep.cc tensorflow/core/example/feature.pb.cc tensorflow/core/example/example.pb.cc -PB_LIBDIR=$(PB_DIR)/lib -TF_LIBDIR=$(TF_DIR)/bazel-bin/tensorflow/core -LDFLAGS=-L$(TF_LIBDIR) -L$(PB_LIBDIR) -LDLIBS=-lprotos_all_cc -lprotobuf -lpthread -lm +tensorflow/core/example: + @mkdir -p tensorflow/core/example -fastprep: fastprep.cc +clean: + @rm -f fastprep + +mrproper: clean + @rm -rf tensorflow