forked from TUI-NICR/ESANet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_to_onnx.py
78 lines (67 loc) · 2.67 KB
/
model_to_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# -*- coding: utf-8 -*-
"""
.. codeauthor:: Mona Koehler <[email protected]>
.. codeauthor:: Daniel Seichter <[email protected]>
"""
import argparse
import os
import numpy as np
import torch
from src.args import ArgumentParserRGBDSegmentation
from src.build_model import build_model
from src.prepare_data import prepare_data
if __name__ == '__main__':
# arguments
parser = ArgumentParserRGBDSegmentation(
description='Efficient RGBD Indoor Sematic Segmentation (ONNX Export)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.set_common_args()
parser.add_argument('--onnx_opset_version', type=int, default=11,
help='Different versions lead to different results but'
'not all versions are supported for a following'
'TensorRT conversion.')
parser.add_argument('--model_output_name', type=str, default='model',
help='Name for the onnx model that will be saved.')
args = parser.parse_args()
args.pretrained_on_imagenet = False
dataset, _ = prepare_data(args, with_input_orig=True)
model, device = build_model(args, dataset.n_classes_without_void)
os.makedirs('./onnx_models', exist_ok=True)
# load weights
if args.last_ckpt:
checkpoint = torch.load(args.last_ckpt,
map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['state_dict'], strict=True)
model.eval()
model.to(device)
rgb = np.random.random(size=(1, 3, args.height, args.width))
rgb = rgb.astype(np.float32)
depth = np.random.random(size=(1, 1, args.height, args.width))
depth = depth.astype(np.float32)
onnx_file_path = os.path.join('onnx_models',
f'{args.model_output_name}.onnx')
rgb_torch = torch.from_numpy(rgb)
depth_torch = torch.from_numpy(depth)
rgb_torch = rgb_torch.to(device)
depth_torch = depth_torch.to(device)
if args.modality == 'rgbd':
# rgbd
inp = (rgb_torch, depth_torch)
input_names = ['rgb', 'depth']
elif args.modality == 'rgb':
# rgb
inp = rgb_torch
input_names = ['rgb']
else:
# depth
inp = depth_torch
input_names = ['depth']
torch.onnx.export(model,
inp,
onnx_file_path,
export_params=True,
input_names=input_names,
output_names=['output'],
do_constant_folding=True,
verbose=False,
opset_version=args.onnx_opset_version)