forked from YueLiao/PPDM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopts.py
299 lines (269 loc) · 15.3 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
class opts(object):
def __init__(self):
self.parser = argparse.ArgumentParser()
# basic experiment setting
self.parser.add_argument('task', default='Hoidet',
help='ctdet | ddd | multi_pose | exdet')
self.parser.add_argument('--dataset', default='hico',
help='hico | vcoco | hoia')
self.parser.add_argument('--exp_id', default='default')
self.parser.add_argument('--test', action='store_true')
self.parser.add_argument('--debug', type=int, default=0,
help='level of visualization.'
'1: only show the final detection results'
'2: show the network output features'
'3: use matplot to display' # useful when lunching training with ipython notebook
'4: save all visualizations to disk')
self.parser.add_argument('--demo', default='',
help='path to image/ image folders/ video. '
'or "webcam"')
self.parser.add_argument('--load_model', default='',
help='path to pretrained model')
self.parser.add_argument('--resume', action='store_true',
help='resume an experiment. '
'Reloaded the optimizer parameter and '
'set load_model to model_last.pth '
'in the exp dir if load_model is empty.')
# system
self.parser.add_argument('--gpus', default='0',
help='-1 for CPU, use comma for multiple gpus')
self.parser.add_argument('--num_workers', type=int, default=4,
help='dataloader threads. 0 for single-thread.')
self.parser.add_argument('--not_cuda_benchmark', action='store_true',
help='disable when the input size is not fixed.')
self.parser.add_argument('--seed', type=int, default=317,
help='random seed') # from CornerNet
# log
self.parser.add_argument('--print_iter', type=int, default=0,
help='disable progress bar and print to screen.')
self.parser.add_argument('--hide_data_time', action='store_true',
help='not display time during training.')
self.parser.add_argument('--save_all', action='store_true',
help='save model to disk every 5 epochs.')
self.parser.add_argument('--metric', default='loss',
help='main metric to save best model')
self.parser.add_argument('--vis_thresh', type=float, default=0.3,
help='visualization threshold.')
self.parser.add_argument('--debugger_theme', default='white',
choices=['white', 'black'])
# model
self.parser.add_argument('--arch', default='dla_34',
help='model architecture. Currently tested'
'res_18 | resdcn_18 | dla_34 | hourglass')
self.parser.add_argument('--head_conv', type=int, default=-1,
help='conv layer channels for output head'
'0 for no conv layer'
'-1 for default setting: '
'64 for resnets and 256 for dla.')
self.parser.add_argument('--down_ratio', type=int, default=4,
help='output stride. Currently only supports 4.')
# input
self.parser.add_argument('--input_res', type=int, default=-1,
help='input height and width. -1 for default from '
'dataset. Will be overriden by input_h | input_w')
self.parser.add_argument('--input_h', type=int, default=-1,
help='input height. -1 for default from dataset.')
self.parser.add_argument('--input_w', type=int, default=-1,
help='input width. -1 for default from dataset.')
# train
self.parser.add_argument('--lr', type=float, default=1.25e-4,
help='learning rate for batch size 32.')
self.parser.add_argument('--lr_step', type=str, default='90,120',
help='drop learning rate by 10.')
self.parser.add_argument('--num_epochs', type=int, default=140,
help='total training epochs.')
self.parser.add_argument('--batch_size', type=int, default=32,
help='batch size')
self.parser.add_argument('--master_batch_size', type=int, default=-1,
help='batch size on the master gpu.')
self.parser.add_argument('--num_iters', type=int, default=-1,
help='default: #samples / batch_size.')
self.parser.add_argument('--val_intervals', type=int, default=100000,
help='number of epochs to run validation.')
self.parser.add_argument('--trainval', action='store_true',
help='include validation in training and '
'test on test set')
# test
self.parser.add_argument('--flip_test', action='store_true',
help='flip data augmentation.')
self.parser.add_argument('--test_scales', type=str, default='1',
help='multi scale test augmentation.')
self.parser.add_argument('--nms', action='store_true',
help='run nms in testing.')
self.parser.add_argument('--K', type=int, default=100,
help='max number of output objects.')
self.parser.add_argument('--not_prefetch_test', action='store_true',
help='not use parallal data pre-processing.')
self.parser.add_argument('--fix_res', action='store_true',
help='fix testing resolution or keep '
'the original resolution')
self.parser.add_argument('--keep_res', action='store_true',
help='keep the original resolution'
' during validation.')
self.parser.add_argument('--save_predictions', action='store_true',
help='saving predictions when testing')
self.parser.add_argument('--test_with_eval', action='store_true',
help='do evaluation when testing')
self.parser.add_argument('--test_video', action='store_true',
help='inference with a video')
self.parser.add_argument('--test_dir', type=str, default='',
help='the video path')
self.parser.add_argument('--save_video', type=str, default='',
help='the video save path')
# dataset
self.parser.add_argument('--not_rand_crop', action='store_true',
help='not use the random crop data augmentation'
'from CornerNet.')
self.parser.add_argument('--shift', type=float, default=0.1,
help='when not using random crop'
'apply shift augmentation.')
self.parser.add_argument('--scale', type=float, default=0.4,
help='when not using random crop'
'apply scale augmentation.')
self.parser.add_argument('--rotate', type=float, default=0,
help='when not using random crop'
'apply rotation augmentation.')
self.parser.add_argument('--flip', type=float, default=0.5,
help='probability of applying flip augmentation.')
self.parser.add_argument('--no_color_aug', action='store_true',
help='not use the color augmenation '
'from CornerNet')
# loss
self.parser.add_argument('--mse_loss', action='store_true',
help='use mse loss or focal loss to train '
'keypoint heatmaps.')
# ctdet
self.parser.add_argument('--reg_loss', default='l1',
help='regression loss: sl1 | l1 | l2')
self.parser.add_argument('--hm_weight', type=float, default=1,
help='loss weight for keypoint heatmaps.')
self.parser.add_argument('--off_weight', type=float, default=1,
help='loss weight for keypoint local offsets.')
self.parser.add_argument('--wh_weight', type=float, default=0.1,
help='loss weight for bounding box size.')
# task
# ctdet
self.parser.add_argument('--norm_wh', action='store_true',
help='L1(\hat(y) / y, 1) or L1(\hat(y), y)')
self.parser.add_argument('--dense_wh', action='store_true',
help='apply weighted regression near center or '
'just apply regression on center point.')
self.parser.add_argument('--cat_spec_wh', action='store_true',
help='category specific bounding box size.')
self.parser.add_argument('--not_reg_offset', action='store_true',
help='not regress local offset.')
# ground truth validation
self.parser.add_argument('--image_dir', type=str, default='images/trainval',
help='training dataset path.')
self.parser.add_argument('--root_path', type=str, default='../Dataset',
help='training dataset path.')
self.parser.add_argument('--use_cos', type=int, default=0
, help='whether using cosine lr step policy')
self.parser.add_argument('--use_verb_sub', type=int, default=0
, help='whether using verb categories for subject')
def parse(self, args=''):
if args == '':
opt = self.parser.parse_args()
else:
opt = self.parser.parse_args(args)
opt.gpus_str = opt.gpus
opt.gpus = [int(gpu) for gpu in opt.gpus.split(',')]
opt.gpus = [i for i in range(len(opt.gpus))] if opt.gpus[0] >= 0 else [-1]
opt.lr_step = [int(i) for i in opt.lr_step.split(',')]
opt.test_scales = [float(i) for i in opt.test_scales.split(',')]
opt.fix_res = not opt.keep_res
print('Fix size testing.' if opt.fix_res else 'Keep resolution testing.')
opt.reg_offset = not opt.not_reg_offset
if opt.head_conv == -1: # init default head_conv
opt.head_conv = 256 if 'dla' in opt.arch else 64
opt.pad = 127 if 'hourglass' in opt.arch else 31
opt.num_stacks = 2 if opt.arch == 'hourglass' else 1
if opt.trainval:
opt.val_intervals = 100000000
if opt.debug > 0:
opt.num_workers = 0
opt.batch_size = 1
opt.gpus = [opt.gpus[0]]
opt.master_batch_size = -1
if opt.master_batch_size == -1:
opt.master_batch_size = opt.batch_size // len(opt.gpus)
rest_batch_size = (opt.batch_size - opt.master_batch_size)
opt.chunk_sizes = [opt.master_batch_size]
for i in range(len(opt.gpus) - 1):
slave_chunk_size = rest_batch_size // (len(opt.gpus) - 1)
if i < rest_batch_size % (len(opt.gpus) - 1):
slave_chunk_size += 1
opt.chunk_sizes.append(slave_chunk_size)
print('training chunk_sizes:', opt.chunk_sizes)
opt.root_dir = os.path.join(os.path.dirname(__file__), '..', '..')
opt.data_dir = os.path.join(opt.root_dir, 'data')
opt.exp_dir = os.path.join(opt.root_dir, 'exp', opt.task)
opt.save_dir = os.path.join(opt.exp_dir, opt.exp_id)
opt.debug_dir = os.path.join(opt.save_dir, 'debug')
print('The output will be saved to ', opt.save_dir)
if opt.resume and opt.load_model == '':
model_path = opt.save_dir[:-4] if opt.save_dir.endswith('TEST') \
else opt.save_dir
opt.load_model = os.path.join(model_path, 'model_last.pth')
return opt
@staticmethod
def update_dataset_info_and_set_heads(opt, dataset):
input_h, input_w = dataset.default_resolution
opt.mean, opt.std = dataset.mean, dataset.std
opt.num_classes = dataset.num_classes
opt.num_classes_verb = dataset.num_classes_verb
# input_h(w): opt.input_h overrides opt.input_res overrides dataset default
input_h = opt.input_res if opt.input_res > 0 else input_h
input_w = opt.input_res if opt.input_res > 0 else input_w
opt.input_h = opt.input_h if opt.input_h > 0 else input_h
opt.input_w = opt.input_w if opt.input_w > 0 else input_w
opt.output_h = opt.input_h // opt.down_ratio
opt.output_w = opt.input_w // opt.down_ratio
opt.input_res = max(opt.input_h, opt.input_w)
opt.output_res = max(opt.output_h, opt.output_w)
if opt.task == 'Hoidet':
assert opt.dataset in ['hico', 'vcoco', 'hoia']
opt.heads = {'hm': opt.num_classes,
'wh': 2 if not opt.cat_spec_wh else 2 * opt.num_classes,
'hm_rel': opt.num_classes_verb,
'sub_offset': 2,
'obj_offset': 2}
if opt.reg_offset:
opt.heads.update({'reg': 2})
else:
assert 0, 'task not defined!'
print('heads', opt.heads)
return opt
def init(self, args=''):
default_dataset_info = {
'Hoidet': {'default_resolution': [512, 512], 'num_classes': 80,
'mean': [0.408, 0.447, 0.470], 'std': [0.289, 0.274, 0.278],
'dataset': 'hico', 'num_classes_verb': 117}
}
class Struct:
def __init__(self, entries):
for k, v in entries.items():
self.__setattr__(k, v)
opt = self.parse(args)
dataset = Struct(default_dataset_info[opt.task])
opt.dataset = dataset.dataset
opt = self.update_dataset_info_and_set_heads(opt, dataset)
return opt
@staticmethod
def setup_print(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print