-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdrawmel.py
51 lines (46 loc) · 1.52 KB
/
drawmel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import logging
import librosa
from nsf_hifigan.mel_processing import wav2mel
import os
import torch
from tqdm import tqdm
MATPLOTLIB_FLAG = False
def plot_spectrogram_to_numpy(spectrogram,name):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
interpolation='none')
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.savefig(f'mel/{name}',dpi=300, bbox_inches='tight')
plt.close()
if __name__ == '__main__':
folder = 'infer_out/001_030'
for wav in tqdm(os.listdir(folder)):
wav_path = os.path.join(folder,wav)
# wav_path = 'infer_out/001_000/001_000_24k.wav'
name,_ = os.path.splitext(os.path.basename(wav_path))
wav, _ = librosa.core.load(wav_path, sr=24000)
wav = torch.from_numpy(wav)
spec = wav2mel(wav.squeeze(),
512,
80,
24000,
128,
512,
False,
False)
plot_spectrogram_to_numpy(spec,name)