-
Notifications
You must be signed in to change notification settings - Fork 159
/
dataset.py
117 lines (90 loc) · 3.76 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/python
# encoding: utf-8
import os
import random
import torch
import numpy as np
from torch.utils.data import Dataset
from PIL import Image
from clip import *
import glob
class listDataset(Dataset):
# clip duration = 8, i.e, for each time 8 frames are considered together
def __init__(self, base, root, dataset_use='ucf101-24', shape=None, shuffle=True,
transform=None, target_transform=None,
train=False, seen=0, batch_size=64,
clip_duration=16, num_workers=4):
with open(root, 'r') as file:
self.lines = file.readlines()
if shuffle:
random.shuffle(self.lines)
self.base_path = base
self.dataset_use = dataset_use
self.nSamples = len(self.lines)
self.transform = transform
self.target_transform = target_transform
self.train = train
self.shape = shape
self.seen = seen
self.batch_size = batch_size
self.clip_duration = clip_duration
self.num_workers = num_workers
def __len__(self):
return self.nSamples
def __getitem__(self, index):
assert index <= len(self), 'index range error'
imgpath = self.lines[index].rstrip()
self.shape = (224, 224)
if self.train: # For Training
jitter = 0.2
hue = 0.1
saturation = 1.5
exposure = 1.5
clip, label = load_data_detection(self.base_path, imgpath, self.train, self.clip_duration, self.shape, self.dataset_use, jitter, hue, saturation, exposure)
else: # For Testing
frame_idx, clip, label = load_data_detection(self.base_path, imgpath, False, self.clip_duration, self.shape, self.dataset_use)
clip = [img.resize(self.shape) for img in clip]
if self.transform is not None:
clip = [self.transform(img) for img in clip]
# (self.duration, -1) + self.shape = (8, -1, 224, 224)
clip = torch.cat(clip, 0).view((self.clip_duration, -1) + self.shape).permute(1, 0, 2, 3)
if self.target_transform is not None:
label = self.target_transform(label)
self.seen = self.seen + self.num_workers
if self.train:
return (clip, label)
else:
return (frame_idx, clip, label)
class testData(Dataset):
# clip duration = 8, i.e, for each time 8 frames are considered together
def __init__(self, root, shape=None, shuffle=False,
transform=None, target_transform=None,
train=False, seen=0, batch_size=64,
clip_duration=16, num_workers=4):
self.root = root
self.imgpaths = sorted(glob.glob(os.path.join(root, '*.jpg')))
if shuffle:
random.shuffle(self.lines)
self.nSamples = len(self.imgpaths)
self.transform = transform
self.target_transform = target_transform
self.train = train
self.shape = shape
self.seen = seen
self.batch_size = batch_size
self.clip_duration = clip_duration
self.num_workers = num_workers
def __len__(self):
return self.nSamples
def __getitem__(self, index):
assert index <= len(self), 'index range error'
imgpath = self.imgpaths[index]
clip,label = load_data_detection_test(self.root, imgpath, self.clip_duration, self.nSamples)
clip = [img.resize(self.shape) for img in clip]
if self.transform is not None:
clip = [self.transform(img) for img in clip]
clip = torch.cat(clip, 0).view((self.clip_duration, -1) + self.shape).permute(1, 0, 2, 3)
if self.target_transform is not None:
label = self.target_transform(label)
self.seen = self.seen + self.num_workers
return clip,label