forked from coqui-ai/STT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeepSpeech.py
executable file
·906 lines (716 loc) · 38.5 KB
/
DeepSpeech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
import os
import sys
LOG_LEVEL_INDEX = sys.argv.index('--log_level') + 1 if '--log_level' in sys.argv else 0
os.environ['TF_CPP_MIN_LOG_LEVEL'] = sys.argv[LOG_LEVEL_INDEX] if 0 < LOG_LEVEL_INDEX < len(sys.argv) else '3'
import absl.app
import numpy as np
import progressbar
import shutil
import tensorflow as tf
import tensorflow.compat.v1 as tfv1
import time
from datetime import datetime
from ds_ctcdecoder import ctc_beam_search_decoder, Scorer
from evaluate import evaluate
from six.moves import zip, range
from tensorflow.python.tools import freeze_graph, strip_unused_lib
from util.config import Config, initialize_globals
from util.feeding import create_dataset, samples_to_mfccs, audiofile_to_features
from util.flags import create_flags, FLAGS
from util.logging import log_info, log_error, log_debug, log_progress, create_progressbar
# Graph Creation
# ==============
def variable_on_cpu(name, shape, initializer):
r"""
Next we concern ourselves with graph creation.
However, before we do so we must introduce a utility function ``variable_on_cpu()``
used to create a variable in CPU memory.
"""
# Use the /cpu:0 device for scoped operations
with tf.device(Config.cpu_device):
# Create or get apropos variable
var = tfv1.get_variable(name=name, shape=shape, initializer=initializer)
return var
def create_overlapping_windows(batch_x):
batch_size = tf.shape(input=batch_x)[0]
window_width = 2 * Config.n_context + 1
num_channels = Config.n_input
# Create a constant convolution filter using an identity matrix, so that the
# convolution returns patches of the input tensor as is, and we can create
# overlapping windows over the MFCCs.
eye_filter = tf.constant(np.eye(window_width * num_channels)
.reshape(window_width, num_channels, window_width * num_channels), tf.float32) # pylint: disable=bad-continuation
# Create overlapping windows
batch_x = tf.nn.conv1d(input=batch_x, filters=eye_filter, stride=1, padding='SAME')
# Remove dummy depth dimension and reshape into [batch_size, n_windows, window_width, n_input]
batch_x = tf.reshape(batch_x, [batch_size, -1, window_width, num_channels])
return batch_x
def dense(name, x, units, dropout_rate=None, relu=True):
with tfv1.variable_scope(name):
bias = variable_on_cpu('bias', [units], tfv1.zeros_initializer())
weights = variable_on_cpu('weights', [x.shape[-1], units], tfv1.keras.initializers.VarianceScaling(scale=1.0, mode="fan_avg", distribution="uniform"))
output = tf.nn.bias_add(tf.matmul(x, weights), bias)
if relu:
output = tf.minimum(tf.nn.relu(output), FLAGS.relu_clip)
if dropout_rate is not None:
output = tf.nn.dropout(output, rate=dropout_rate)
return output
def rnn_impl_lstmblockfusedcell(x, seq_length, previous_state, reuse):
with tfv1.variable_scope('cudnn_lstm/rnn/multi_rnn_cell/cell_0'):
fw_cell = tf.contrib.rnn.LSTMBlockFusedCell(Config.n_cell_dim,
reuse=reuse,
name='cudnn_compatible_lstm_cell')
output, output_state = fw_cell(inputs=x,
dtype=tf.float32,
sequence_length=seq_length,
initial_state=previous_state)
return output, output_state
def rnn_impl_cudnn_rnn(x, seq_length, previous_state, _):
assert previous_state is None # 'Passing previous state not supported with CuDNN backend'
# Hack: CudnnLSTM works similarly to Keras layers in that when you instantiate
# the object it creates the variables, and then you just call it several times
# to enable variable re-use. Because all of our code is structure in an old
# school TensorFlow structure where you can just call tf.get_variable again with
# reuse=True to reuse variables, we can't easily make use of the object oriented
# way CudnnLSTM is implemented, so we save a singleton instance in the function,
# emulating a static function variable.
if not rnn_impl_cudnn_rnn.cell:
# Forward direction cell:
fw_cell = tf.contrib.cudnn_rnn.CudnnLSTM(num_layers=1,
num_units=Config.n_cell_dim,
input_mode='linear_input',
direction='unidirectional',
dtype=tf.float32)
rnn_impl_cudnn_rnn.cell = fw_cell
output, output_state = rnn_impl_cudnn_rnn.cell(inputs=x,
sequence_lengths=seq_length)
return output, output_state
rnn_impl_cudnn_rnn.cell = None
def rnn_impl_static_rnn(x, seq_length, previous_state, reuse):
with tfv1.variable_scope('cudnn_lstm/rnn/multi_rnn_cell'):
# Forward direction cell:
fw_cell = tfv1.nn.rnn_cell.LSTMCell(Config.n_cell_dim,
reuse=reuse,
name='cudnn_compatible_lstm_cell')
# Split rank N tensor into list of rank N-1 tensors
x = [x[l] for l in range(x.shape[0])]
output, output_state = tfv1.nn.static_rnn(cell=fw_cell,
inputs=x,
sequence_length=seq_length,
initial_state=previous_state,
dtype=tf.float32,
scope='cell_0')
output = tf.concat(output, 0)
return output, output_state
def create_model(batch_x, seq_length, dropout, reuse=False, batch_size=None, previous_state=None, overlap=True, rnn_impl=rnn_impl_lstmblockfusedcell):
layers = {}
# Input shape: [batch_size, n_steps, n_input + 2*n_input*n_context]
if not batch_size:
batch_size = tf.shape(input=batch_x)[0]
# Create overlapping feature windows if needed
if overlap:
batch_x = create_overlapping_windows(batch_x)
# Reshaping `batch_x` to a tensor with shape `[n_steps*batch_size, n_input + 2*n_input*n_context]`.
# This is done to prepare the batch for input into the first layer which expects a tensor of rank `2`.
# Permute n_steps and batch_size
batch_x = tf.transpose(a=batch_x, perm=[1, 0, 2, 3])
# Reshape to prepare input for first layer
batch_x = tf.reshape(batch_x, [-1, Config.n_input + 2*Config.n_input*Config.n_context]) # (n_steps*batch_size, n_input + 2*n_input*n_context)
layers['input_reshaped'] = batch_x
# The next three blocks will pass `batch_x` through three hidden layers with
# clipped RELU activation and dropout.
layers['layer_1'] = layer_1 = dense('layer_1', batch_x, Config.n_hidden_1, dropout_rate=dropout[0])
layers['layer_2'] = layer_2 = dense('layer_2', layer_1, Config.n_hidden_2, dropout_rate=dropout[1])
layers['layer_3'] = layer_3 = dense('layer_3', layer_2, Config.n_hidden_3, dropout_rate=dropout[2])
# `layer_3` is now reshaped into `[n_steps, batch_size, 2*n_cell_dim]`,
# as the LSTM RNN expects its input to be of shape `[max_time, batch_size, input_size]`.
layer_3 = tf.reshape(layer_3, [-1, batch_size, Config.n_hidden_3])
# Run through parametrized RNN implementation, as we use different RNNs
# for training and inference
output, output_state = rnn_impl(layer_3, seq_length, previous_state, reuse)
# Reshape output from a tensor of shape [n_steps, batch_size, n_cell_dim]
# to a tensor of shape [n_steps*batch_size, n_cell_dim]
output = tf.reshape(output, [-1, Config.n_cell_dim])
layers['rnn_output'] = output
layers['rnn_output_state'] = output_state
# Now we feed `output` to the fifth hidden layer with clipped RELU activation
layers['layer_5'] = layer_5 = dense('layer_5', output, Config.n_hidden_5, dropout_rate=dropout[5])
# Now we apply a final linear layer creating `n_classes` dimensional vectors, the logits.
layers['layer_6'] = layer_6 = dense('layer_6', layer_5, Config.n_hidden_6, relu=False)
# Finally we reshape layer_6 from a tensor of shape [n_steps*batch_size, n_hidden_6]
# to the slightly more useful shape [n_steps, batch_size, n_hidden_6].
# Note, that this differs from the input in that it is time-major.
layer_6 = tf.reshape(layer_6, [-1, batch_size, Config.n_hidden_6], name='raw_logits')
layers['raw_logits'] = layer_6
# Output shape: [n_steps, batch_size, n_hidden_6]
return layer_6, layers
# Accuracy and Loss
# =================
# In accord with 'Deep Speech: Scaling up end-to-end speech recognition'
# (http://arxiv.org/abs/1412.5567),
# the loss function used by our network should be the CTC loss function
# (http://www.cs.toronto.edu/~graves/preprint.pdf).
# Conveniently, this loss function is implemented in TensorFlow.
# Thus, we can simply make use of this implementation to define our loss.
def calculate_mean_edit_distance_and_loss(iterator, dropout, reuse):
r'''
This routine beam search decodes a mini-batch and calculates the loss and mean edit distance.
Next to total and average loss it returns the mean edit distance,
the decoded result and the batch's original Y.
'''
# Obtain the next batch of data
batch_filenames, (batch_x, batch_seq_len), batch_y = iterator.get_next()
if FLAGS.use_cudnn_rnn:
rnn_impl = rnn_impl_cudnn_rnn
else:
rnn_impl = rnn_impl_lstmblockfusedcell
# Calculate the logits of the batch
logits, _ = create_model(batch_x, batch_seq_len, dropout, reuse=reuse, rnn_impl=rnn_impl)
# Compute the CTC loss using TensorFlow's `ctc_loss`
total_loss = tfv1.nn.ctc_loss(labels=batch_y, inputs=logits, sequence_length=batch_seq_len)
# Check if any files lead to non finite loss
non_finite_files = tf.gather(batch_filenames, tfv1.where(~tf.math.is_finite(total_loss)))
# Calculate the average loss across the batch
avg_loss = tf.reduce_mean(input_tensor=total_loss)
# Finally we return the average loss
return avg_loss, non_finite_files
# Adam Optimization
# =================
# In contrast to 'Deep Speech: Scaling up end-to-end speech recognition'
# (http://arxiv.org/abs/1412.5567),
# in which 'Nesterov's Accelerated Gradient Descent'
# (www.cs.toronto.edu/~fritz/absps/momentum.pdf) was used,
# we will use the Adam method for optimization (http://arxiv.org/abs/1412.6980),
# because, generally, it requires less fine-tuning.
def create_optimizer():
optimizer = tfv1.train.AdamOptimizer(learning_rate=FLAGS.learning_rate,
beta1=FLAGS.beta1,
beta2=FLAGS.beta2,
epsilon=FLAGS.epsilon)
return optimizer
# Towers
# ======
# In order to properly make use of multiple GPU's, one must introduce new abstractions,
# not present when using a single GPU, that facilitate the multi-GPU use case.
# In particular, one must introduce a means to isolate the inference and gradient
# calculations on the various GPU's.
# The abstraction we intoduce for this purpose is called a 'tower'.
# A tower is specified by two properties:
# * **Scope** - A scope, as provided by `tf.name_scope()`,
# is a means to isolate the operations within a tower.
# For example, all operations within 'tower 0' could have their name prefixed with `tower_0/`.
# * **Device** - A hardware device, as provided by `tf.device()`,
# on which all operations within the tower execute.
# For example, all operations of 'tower 0' could execute on the first GPU `tf.device('/gpu:0')`.
def get_tower_results(iterator, optimizer, dropout_rates):
r'''
With this preliminary step out of the way, we can for each GPU introduce a
tower for which's batch we calculate and return the optimization gradients
and the average loss across towers.
'''
# To calculate the mean of the losses
tower_avg_losses = []
# Tower gradients to return
tower_gradients = []
# Aggregate any non finite files in the batches
tower_non_finite_files = []
with tfv1.variable_scope(tfv1.get_variable_scope()):
# Loop over available_devices
for i in range(len(Config.available_devices)):
# Execute operations of tower i on device i
device = Config.available_devices[i]
with tf.device(device):
# Create a scope for all operations of tower i
with tf.name_scope('tower_%d' % i):
# Calculate the avg_loss and mean_edit_distance and retrieve the decoded
# batch along with the original batch's labels (Y) of this tower
avg_loss, non_finite_files = calculate_mean_edit_distance_and_loss(iterator, dropout_rates, reuse=i > 0)
# Allow for variables to be re-used by the next tower
tfv1.get_variable_scope().reuse_variables()
# Retain tower's avg losses
tower_avg_losses.append(avg_loss)
# Compute gradients for model parameters using tower's mini-batch
gradients = optimizer.compute_gradients(avg_loss)
# Retain tower's gradients
tower_gradients.append(gradients)
tower_non_finite_files.append(non_finite_files)
avg_loss_across_towers = tf.reduce_mean(input_tensor=tower_avg_losses, axis=0)
tfv1.summary.scalar(name='step_loss', tensor=avg_loss_across_towers, collections=['step_summaries'])
all_non_finite_files = tf.concat(tower_non_finite_files, axis=0)
# Return gradients and the average loss
return tower_gradients, avg_loss_across_towers, all_non_finite_files
def average_gradients(tower_gradients):
r'''
A routine for computing each variable's average of the gradients obtained from the GPUs.
Note also that this code acts as a synchronization point as it requires all
GPUs to be finished with their mini-batch before it can run to completion.
'''
# List of average gradients to return to the caller
average_grads = []
# Run this on cpu_device to conserve GPU memory
with tf.device(Config.cpu_device):
# Loop over gradient/variable pairs from all towers
for grad_and_vars in zip(*tower_gradients):
# Introduce grads to store the gradients for the current variable
grads = []
# Loop over the gradients for the current variable
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension
grad = tf.concat(grads, 0)
grad = tf.reduce_mean(input_tensor=grad, axis=0)
# Create a gradient/variable tuple for the current variable with its average gradient
grad_and_var = (grad, grad_and_vars[0][1])
# Add the current tuple to average_grads
average_grads.append(grad_and_var)
# Return result to caller
return average_grads
# Logging
# =======
def log_variable(variable, gradient=None):
r'''
We introduce a function for logging a tensor variable's current state.
It logs scalar values for the mean, standard deviation, minimum and maximum.
Furthermore it logs a histogram of its state and (if given) of an optimization gradient.
'''
name = variable.name.replace(':', '_')
mean = tf.reduce_mean(input_tensor=variable)
tfv1.summary.scalar(name='%s/mean' % name, tensor=mean)
tfv1.summary.scalar(name='%s/sttdev' % name, tensor=tf.sqrt(tf.reduce_mean(input_tensor=tf.square(variable - mean))))
tfv1.summary.scalar(name='%s/max' % name, tensor=tf.reduce_max(input_tensor=variable))
tfv1.summary.scalar(name='%s/min' % name, tensor=tf.reduce_min(input_tensor=variable))
tfv1.summary.histogram(name=name, values=variable)
if gradient is not None:
if isinstance(gradient, tf.IndexedSlices):
grad_values = gradient.values
else:
grad_values = gradient
if grad_values is not None:
tfv1.summary.histogram(name='%s/gradients' % name, values=grad_values)
def log_grads_and_vars(grads_and_vars):
r'''
Let's also introduce a helper function for logging collections of gradient/variable tuples.
'''
for gradient, variable in grads_and_vars:
log_variable(variable, gradient=gradient)
def try_loading(session, saver, checkpoint_filename, caption):
try:
checkpoint = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir, checkpoint_filename)
if not checkpoint:
return False
checkpoint_path = checkpoint.model_checkpoint_path
saver.restore(session, checkpoint_path)
restored_step = session.run(tfv1.train.get_global_step())
log_info('Restored variables from %s checkpoint at %s, step %d' % (caption, checkpoint_path, restored_step))
return True
except tf.errors.InvalidArgumentError as e:
log_error(str(e))
log_error('The checkpoint in {0} does not match the shapes of the model.'
' Did you change alphabet.txt or the --n_hidden parameter'
' between train runs using the same checkpoint dir? Try moving'
' or removing the contents of {0}.'.format(checkpoint_path))
sys.exit(1)
def train():
# Create training and validation datasets
train_set = create_dataset(FLAGS.train_files.split(','),
batch_size=FLAGS.train_batch_size,
cache_path=FLAGS.feature_cache,
train_phase=True)
iterator = tfv1.data.Iterator.from_structure(tfv1.data.get_output_types(train_set),
tfv1.data.get_output_shapes(train_set),
output_classes=tfv1.data.get_output_classes(train_set))
# Make initialization ops for switching between the two sets
train_init_op = iterator.make_initializer(train_set)
if FLAGS.dev_files:
dev_csvs = FLAGS.dev_files.split(',')
dev_sets = [create_dataset([csv], batch_size=FLAGS.dev_batch_size, train_phase=False) for csv in dev_csvs]
dev_init_ops = [iterator.make_initializer(dev_set) for dev_set in dev_sets]
# Dropout
dropout_rates = [tfv1.placeholder(tf.float32, name='dropout_{}'.format(i)) for i in range(6)]
dropout_feed_dict = {
dropout_rates[0]: FLAGS.dropout_rate,
dropout_rates[1]: FLAGS.dropout_rate2,
dropout_rates[2]: FLAGS.dropout_rate3,
dropout_rates[3]: FLAGS.dropout_rate4,
dropout_rates[4]: FLAGS.dropout_rate5,
dropout_rates[5]: FLAGS.dropout_rate6,
}
no_dropout_feed_dict = {
rate: 0. for rate in dropout_rates
}
# Building the graph
optimizer = create_optimizer()
gradients, loss, non_finite_files = get_tower_results(iterator, optimizer, dropout_rates)
# Average tower gradients across GPUs
avg_tower_gradients = average_gradients(gradients)
log_grads_and_vars(avg_tower_gradients)
# global_step is automagically incremented by the optimizer
global_step = tfv1.train.get_or_create_global_step()
apply_gradient_op = optimizer.apply_gradients(avg_tower_gradients, global_step=global_step)
# Summaries
step_summaries_op = tfv1.summary.merge_all('step_summaries')
step_summary_writers = {
'train': tfv1.summary.FileWriter(os.path.join(FLAGS.summary_dir, 'train'), max_queue=120),
'dev': tfv1.summary.FileWriter(os.path.join(FLAGS.summary_dir, 'dev'), max_queue=120)
}
# Checkpointing
checkpoint_saver = tfv1.train.Saver(max_to_keep=FLAGS.max_to_keep)
checkpoint_path = os.path.join(FLAGS.checkpoint_dir, 'train')
checkpoint_filename = 'checkpoint'
best_dev_saver = tfv1.train.Saver(max_to_keep=1)
best_dev_path = os.path.join(FLAGS.checkpoint_dir, 'best_dev')
best_dev_filename = 'best_dev_checkpoint'
# Save flags next to checkpoints
os.makedirs(FLAGS.checkpoint_dir, exist_ok=True)
flags_file = os.path.join(FLAGS.checkpoint_dir, 'flags.txt')
with open(flags_file, 'w') as fout:
fout.write(FLAGS.flags_into_string())
initializer = tfv1.global_variables_initializer()
with tfv1.Session(config=Config.session_config) as session:
log_debug('Session opened.')
# Loading or initializing
loaded = False
# Initialize training from a CuDNN RNN checkpoint
if FLAGS.cudnn_checkpoint:
if FLAGS.use_cudnn_rnn:
log_error('Trying to use --cudnn_checkpoint but --use_cudnn_rnn '
'was specified. The --cudnn_checkpoint flag is only '
'needed when converting a CuDNN RNN checkpoint to '
'a CPU-capable graph. If your system is capable of '
'using CuDNN RNN, you can just specify the CuDNN RNN '
'checkpoint normally with --checkpoint_dir.')
exit(1)
log_info('Converting CuDNN RNN checkpoint from {}'.format(FLAGS.cudnn_checkpoint))
ckpt = tfv1.train.load_checkpoint(FLAGS.cudnn_checkpoint)
missing_variables = []
# Load compatible variables from checkpoint
for v in tfv1.global_variables():
try:
v.load(ckpt.get_tensor(v.op.name), session=session)
except tf.errors.NotFoundError:
missing_variables.append(v)
# Check that the only missing variables are the Adam moment tensors
if any('Adam' not in v.op.name for v in missing_variables):
log_error('Tried to load a CuDNN RNN checkpoint but there were '
'more missing variables than just the Adam moment '
'tensors.')
exit(1)
# Initialize Adam moment tensors from scratch to allow use of CuDNN
# RNN checkpoints.
log_info('Initializing missing Adam moment tensors.')
init_op = tfv1.variables_initializer(missing_variables)
session.run(init_op)
loaded = True
tfv1.get_default_graph().finalize()
if not loaded and FLAGS.load in ['auto', 'last']:
loaded = try_loading(session, checkpoint_saver, checkpoint_filename, 'most recent')
if not loaded and FLAGS.load in ['auto', 'best']:
loaded = try_loading(session, best_dev_saver, best_dev_filename, 'best validation')
if not loaded:
if FLAGS.load in ['auto', 'init']:
log_info('Initializing variables...')
session.run(initializer)
else:
log_error('Unable to load %s model from specified checkpoint dir'
' - consider using load option "auto" or "init".' % FLAGS.load)
sys.exit(1)
def run_set(set_name, epoch, init_op, dataset=None):
is_train = set_name == 'train'
train_op = apply_gradient_op if is_train else []
feed_dict = dropout_feed_dict if is_train else no_dropout_feed_dict
total_loss = 0.0
step_count = 0
step_summary_writer = step_summary_writers.get(set_name)
checkpoint_time = time.time()
# Setup progress bar
class LossWidget(progressbar.widgets.FormatLabel):
def __init__(self):
progressbar.widgets.FormatLabel.__init__(self, format='Loss: %(mean_loss)f')
def __call__(self, progress, data, **kwargs):
data['mean_loss'] = total_loss / step_count if step_count else 0.0
return progressbar.widgets.FormatLabel.__call__(self, progress, data, **kwargs)
prefix = 'Epoch {} | {:>10}'.format(epoch, 'Training' if is_train else 'Validation')
widgets = [' | ', progressbar.widgets.Timer(),
' | Steps: ', progressbar.widgets.Counter(),
' | ', LossWidget()]
suffix = ' | Dataset: {}'.format(dataset) if dataset else None
pbar = create_progressbar(prefix=prefix, widgets=widgets, suffix=suffix).start()
# Initialize iterator to the appropriate dataset
session.run(init_op)
# Batch loop
while True:
try:
_, current_step, batch_loss, problem_files, step_summary = \
session.run([train_op, global_step, loss, non_finite_files, step_summaries_op],
feed_dict=feed_dict)
except tf.errors.OutOfRangeError:
break
if problem_files.size > 0:
problem_files = [f.decode('utf8') for f in problem_files[..., 0]]
log_error('The following files caused an infinite (or NaN) '
'loss: {}'.format(','.join(problem_files)))
total_loss += batch_loss
step_count += 1
pbar.update(step_count)
step_summary_writer.add_summary(step_summary, current_step)
if is_train and FLAGS.checkpoint_secs > 0 and time.time() - checkpoint_time > FLAGS.checkpoint_secs:
checkpoint_saver.save(session, checkpoint_path, global_step=current_step)
checkpoint_time = time.time()
pbar.finish()
mean_loss = total_loss / step_count if step_count > 0 else 0.0
return mean_loss, step_count
log_info('STARTING Optimization')
train_start_time = datetime.utcnow()
best_dev_loss = float('inf')
dev_losses = []
try:
for epoch in range(FLAGS.epochs):
# Training
log_progress('Training epoch %d...' % epoch)
train_loss, _ = run_set('train', epoch, train_init_op)
log_progress('Finished training epoch %d - loss: %f' % (epoch, train_loss))
checkpoint_saver.save(session, checkpoint_path, global_step=global_step)
if FLAGS.dev_files:
# Validation
dev_loss = 0.0
total_steps = 0
for csv, init_op in zip(dev_csvs, dev_init_ops):
log_progress('Validating epoch %d on %s...' % (epoch, csv))
set_loss, steps = run_set('dev', epoch, init_op, dataset=csv)
dev_loss += set_loss * steps
total_steps += steps
log_progress('Finished validating epoch %d on %s - loss: %f' % (epoch, csv, set_loss))
dev_loss = dev_loss / total_steps
dev_losses.append(dev_loss)
if dev_loss < best_dev_loss:
best_dev_loss = dev_loss
save_path = best_dev_saver.save(session, best_dev_path, global_step=global_step, latest_filename=best_dev_filename)
log_info("Saved new best validating model with loss %f to: %s" % (best_dev_loss, save_path))
# Early stopping
if FLAGS.early_stop and len(dev_losses) >= FLAGS.es_steps:
mean_loss = np.mean(dev_losses[-FLAGS.es_steps:-1])
std_loss = np.std(dev_losses[-FLAGS.es_steps:-1])
dev_losses = dev_losses[-FLAGS.es_steps:]
log_debug('Checking for early stopping (last %d steps) validation loss: '
'%f, with standard deviation: %f and mean: %f' %
(FLAGS.es_steps, dev_losses[-1], std_loss, mean_loss))
if dev_losses[-1] > np.max(dev_losses[:-1]) or \
(abs(dev_losses[-1] - mean_loss) < FLAGS.es_mean_th and std_loss < FLAGS.es_std_th):
log_info('Early stop triggered as (for last %d steps) validation loss:'
' %f with standard deviation: %f and mean: %f' %
(FLAGS.es_steps, dev_losses[-1], std_loss, mean_loss))
break
except KeyboardInterrupt:
pass
log_info('FINISHED optimization in {}'.format(datetime.utcnow() - train_start_time))
log_debug('Session closed.')
def test():
evaluate(FLAGS.test_files.split(','), create_model, try_loading)
def create_inference_graph(batch_size=1, n_steps=16, tflite=False):
batch_size = batch_size if batch_size > 0 else None
# Create feature computation graph
input_samples = tfv1.placeholder(tf.float32, [Config.audio_window_samples], 'input_samples')
samples = tf.expand_dims(input_samples, -1)
mfccs, _ = samples_to_mfccs(samples, FLAGS.audio_sample_rate)
mfccs = tf.identity(mfccs, name='mfccs')
# Input tensor will be of shape [batch_size, n_steps, 2*n_context+1, n_input]
# This shape is read by the native_client in DS_CreateModel to know the
# value of n_steps, n_context and n_input. Make sure you update the code
# there if this shape is changed.
input_tensor = tfv1.placeholder(tf.float32, [batch_size, n_steps if n_steps > 0 else None, 2 * Config.n_context + 1, Config.n_input], name='input_node')
seq_length = tfv1.placeholder(tf.int32, [batch_size], name='input_lengths')
if batch_size <= 0:
# no state management since n_step is expected to be dynamic too (see below)
previous_state = None
else:
previous_state_c = tfv1.placeholder(tf.float32, [batch_size, Config.n_cell_dim], name='previous_state_c')
previous_state_h = tfv1.placeholder(tf.float32, [batch_size, Config.n_cell_dim], name='previous_state_h')
previous_state = tf.nn.rnn_cell.LSTMStateTuple(previous_state_c, previous_state_h)
# One rate per layer
no_dropout = [None] * 6
if tflite:
rnn_impl = rnn_impl_static_rnn
else:
rnn_impl = rnn_impl_lstmblockfusedcell
logits, layers = create_model(batch_x=input_tensor,
batch_size=batch_size,
seq_length=seq_length if not FLAGS.export_tflite else None,
dropout=no_dropout,
previous_state=previous_state,
overlap=False,
rnn_impl=rnn_impl)
# TF Lite runtime will check that input dimensions are 1, 2 or 4
# by default we get 3, the middle one being batch_size which is forced to
# one on inference graph, so remove that dimension
if tflite:
logits = tf.squeeze(logits, [1])
# Apply softmax for CTC decoder
logits = tf.nn.softmax(logits, name='logits')
if batch_size <= 0:
if tflite:
raise NotImplementedError('dynamic batch_size does not support tflite nor streaming')
if n_steps > 0:
raise NotImplementedError('dynamic batch_size expect n_steps to be dynamic too')
return (
{
'input': input_tensor,
'input_lengths': seq_length,
},
{
'outputs': logits,
},
layers
)
new_state_c, new_state_h = layers['rnn_output_state']
new_state_c = tf.identity(new_state_c, name='new_state_c')
new_state_h = tf.identity(new_state_h, name='new_state_h')
inputs = {
'input': input_tensor,
'previous_state_c': previous_state_c,
'previous_state_h': previous_state_h,
'input_samples': input_samples,
}
if not FLAGS.export_tflite:
inputs['input_lengths'] = seq_length
outputs = {
'outputs': logits,
'new_state_c': new_state_c,
'new_state_h': new_state_h,
'mfccs': mfccs,
}
return inputs, outputs, layers
def file_relative_read(fname):
return open(os.path.join(os.path.dirname(__file__), fname)).read()
def export():
r'''
Restores the trained variables into a simpler graph that will be exported for serving.
'''
log_info('Exporting the model...')
from tensorflow.python.framework.ops import Tensor, Operation
inputs, outputs, _ = create_inference_graph(batch_size=FLAGS.export_batch_size, n_steps=FLAGS.n_steps, tflite=FLAGS.export_tflite)
output_names_tensors = [tensor.op.name for tensor in outputs.values() if isinstance(tensor, Tensor)]
output_names_ops = [op.name for op in outputs.values() if isinstance(op, Operation)]
output_names = ",".join(output_names_tensors + output_names_ops)
# Create a saver using variables from the above newly created graph
saver = tfv1.train.Saver()
# Restore variables from training checkpoint
checkpoint = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
checkpoint_path = checkpoint.model_checkpoint_path
output_filename = 'output_graph.pb'
if FLAGS.remove_export:
if os.path.isdir(FLAGS.export_dir):
log_info('Removing old export')
shutil.rmtree(FLAGS.export_dir)
try:
output_graph_path = os.path.join(FLAGS.export_dir, output_filename)
if not os.path.isdir(FLAGS.export_dir):
os.makedirs(FLAGS.export_dir)
def do_graph_freeze(output_file=None, output_node_names=None, variables_blacklist=''):
frozen = freeze_graph.freeze_graph_with_def_protos(
input_graph_def=tfv1.get_default_graph().as_graph_def(),
input_saver_def=saver.as_saver_def(),
input_checkpoint=checkpoint_path,
output_node_names=output_node_names,
restore_op_name=None,
filename_tensor_name=None,
output_graph=output_file,
clear_devices=False,
variable_names_blacklist=variables_blacklist,
initializer_nodes='')
input_node_names = []
return strip_unused_lib.strip_unused(
input_graph_def=frozen,
input_node_names=input_node_names,
output_node_names=output_node_names.split(','),
placeholder_type_enum=tf.float32.as_datatype_enum)
if not FLAGS.export_tflite:
frozen_graph = do_graph_freeze(output_node_names=output_names)
frozen_graph.version = int(file_relative_read('GRAPH_VERSION').strip())
# Add a no-op node to the graph with metadata information to be loaded by the native client
metadata = frozen_graph.node.add()
metadata.name = 'model_metadata'
metadata.op = 'NoOp'
metadata.attr['sample_rate'].i = FLAGS.audio_sample_rate
metadata.attr['feature_win_len'].i = FLAGS.feature_win_len
metadata.attr['feature_win_step'].i = FLAGS.feature_win_step
if FLAGS.export_language:
metadata.attr['language'].s = FLAGS.export_language.encode('ascii')
with open(output_graph_path, 'wb') as fout:
fout.write(frozen_graph.SerializeToString())
else:
frozen_graph = do_graph_freeze(output_node_names=output_names)
output_tflite_path = os.path.join(FLAGS.export_dir, output_filename.replace('.pb', '.tflite'))
converter = tf.lite.TFLiteConverter(frozen_graph, input_tensors=inputs.values(), output_tensors=outputs.values())
converter.post_training_quantize = True
# AudioSpectrogram and Mfcc ops are custom but have built-in kernels in TFLite
converter.allow_custom_ops = True
tflite_model = converter.convert()
with open(output_tflite_path, 'wb') as fout:
fout.write(tflite_model)
log_info('Exported model for TF Lite engine as {}'.format(os.path.basename(output_tflite_path)))
log_info('Models exported at %s' % (FLAGS.export_dir))
except RuntimeError as e:
log_error(str(e))
def do_single_file_inference(input_file_path):
with tfv1.Session(config=Config.session_config) as session:
inputs, outputs, _ = create_inference_graph(batch_size=1, n_steps=-1)
# Create a saver using variables from the above newly created graph
saver = tfv1.train.Saver()
# Restore variables from training checkpoint
# TODO: This restores the most recent checkpoint, but if we use validation to counteract
# over-fitting, we may want to restore an earlier checkpoint.
checkpoint = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if not checkpoint:
log_error('Checkpoint directory ({}) does not contain a valid checkpoint state.'.format(FLAGS.checkpoint_dir))
exit(1)
checkpoint_path = checkpoint.model_checkpoint_path
saver.restore(session, checkpoint_path)
features, features_len = audiofile_to_features(input_file_path)
previous_state_c = np.zeros([1, Config.n_cell_dim])
previous_state_h = np.zeros([1, Config.n_cell_dim])
# Add batch dimension
features = tf.expand_dims(features, 0)
features_len = tf.expand_dims(features_len, 0)
# Evaluate
features = create_overlapping_windows(features).eval(session=session)
features_len = features_len.eval(session=session)
logits = outputs['outputs'].eval(feed_dict={
inputs['input']: features,
inputs['input_lengths']: features_len,
inputs['previous_state_c']: previous_state_c,
inputs['previous_state_h']: previous_state_h,
}, session=session)
logits = np.squeeze(logits)
if FLAGS.lm_binary_path:
scorer = Scorer(FLAGS.lm_alpha, FLAGS.lm_beta,
FLAGS.lm_binary_path, FLAGS.lm_trie_path,
Config.alphabet)
else:
scorer = None
decoded = ctc_beam_search_decoder(logits, Config.alphabet, FLAGS.beam_width, scorer=scorer)
# Print highest probability result
print(decoded[0][1])
def main(_):
initialize_globals()
if FLAGS.train_files:
tfv1.reset_default_graph()
tfv1.set_random_seed(FLAGS.random_seed)
train()
if FLAGS.test_files:
tfv1.reset_default_graph()
test()
if FLAGS.export_dir:
tfv1.reset_default_graph()
export()
if FLAGS.one_shot_infer:
tfv1.reset_default_graph()
do_single_file_inference(FLAGS.one_shot_infer)
if __name__ == '__main__':
create_flags()
absl.app.run(main)