forked from coqui-ai/STT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun-ci-ldc93s1_checkpoint.sh
executable file
·32 lines (26 loc) · 1.05 KB
/
run-ci-ldc93s1_checkpoint.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#!/bin/sh
set -xe
ldc93s1_dir="./data/smoke_test"
ldc93s1_csv="${ldc93s1_dir}/ldc93s1.csv"
if [ ! -f "${ldc93s1_dir}/ldc93s1.csv" ]; then
echo "Downloading and preprocessing LDC93S1 example data, saving in ${ldc93s1_dir}."
python -u bin/import_ldc93s1.py ${ldc93s1_dir}
fi;
# Force only one visible device because we have a single-sample dataset
# and when trying to run on multiple devices (like GPUs), this will break
export CUDA_VISIBLE_DEVICES=0
python -u train.py --alphabet_config_path "data/alphabet.txt" \
--show_progressbar false --early_stop false \
--train_files ${ldc93s1_csv} --train_batch_size 1 \
--dev_files ${ldc93s1_csv} --dev_batch_size 1 \
--test_files ${ldc93s1_csv} --test_batch_size 1 \
--n_hidden 100 --epochs 1 \
--max_to_keep 1 --checkpoint_dir '/tmp/ckpt' \
--learning_rate 0.001 --dropout_rate 0.05 \
--scorer_path 'data/smoke_test/pruned_lm.scorer' | tee /tmp/resume.log
if ! grep "Loading best validating checkpoint from" /tmp/resume.log; then
echo "Did not resume training from checkpoint"
exit 1
else
exit 0
fi