|
| 1 | +/** |
| 2 | + * The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other. |
| 3 | + * |
| 4 | + * Given an integer n, return all distinct solutions to the n-queens puzzle. |
| 5 | + * |
| 6 | + * Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively. |
| 7 | + * |
| 8 | + * For example, |
| 9 | + * |
| 10 | + * There exist two distinct solutions to the 4-queens puzzle: |
| 11 | + * |
| 12 | + * [ |
| 13 | + * [".Q..", // Solution 1 |
| 14 | + * "...Q", |
| 15 | + * "Q...", |
| 16 | + * "..Q."], |
| 17 | + * |
| 18 | + * ["..Q.", // Solution 2 |
| 19 | + * "Q...", |
| 20 | + * "...Q", |
| 21 | + * ".Q.."] |
| 22 | + * ] |
| 23 | + */ |
| 24 | + |
| 25 | +import java.util.ArrayList; |
| 26 | + |
| 27 | +public class NQueens { |
| 28 | + public ArrayList<String[]> solveNQueens(int n) { |
| 29 | + ArrayList<String[]> ret = new ArrayList<String[]>(); |
| 30 | + if (n == 0) |
| 31 | + return ret; |
| 32 | + StringBuffer line = new StringBuffer(); |
| 33 | + for (int i = 0; i < n; i++) { |
| 34 | + line.append('.'); |
| 35 | + } |
| 36 | + StringBuffer[] sol = new StringBuffer[n]; |
| 37 | + for (int i = 0; i < n; i++) { |
| 38 | + sol[i] = new StringBuffer(line.toString()); |
| 39 | + } |
| 40 | + boolean[] cols = new boolean[n]; |
| 41 | + int[] row = new int[n]; |
| 42 | + findSolutions(n, 0, ret, sol, row, cols); |
| 43 | + return ret; |
| 44 | + } |
| 45 | + |
| 46 | + private void findSolutions(int n, int start, ArrayList<String[]> ret, |
| 47 | + StringBuffer[] sol, int[] row, boolean[] cols) { |
| 48 | + if (start == n) { |
| 49 | + String[] newSol = new String[n]; |
| 50 | + for (int i = 0; i < n; i++) { |
| 51 | + newSol[i] = sol[i].toString(); |
| 52 | + } |
| 53 | + ret.add(newSol); |
| 54 | + } else { |
| 55 | + for (int i = 0; i < n; i++) { |
| 56 | + if (cols[i]) |
| 57 | + continue; |
| 58 | + boolean ok = true; |
| 59 | + for (int j = 0; j < start; j++) { |
| 60 | + if (Math.abs(start - j) == Math.abs(i - row[j])) { |
| 61 | + ok = false; |
| 62 | + break; |
| 63 | + } |
| 64 | + } |
| 65 | + if (ok) { |
| 66 | + cols[i] = true; |
| 67 | + sol[start].setCharAt(i, 'Q'); |
| 68 | + row[start] = i; |
| 69 | + findSolutions(n, start + 1, ret, sol, row, cols); |
| 70 | + row[start] = 0; |
| 71 | + sol[start].setCharAt(i, '.'); |
| 72 | + cols[i] = false; |
| 73 | + } |
| 74 | + } |
| 75 | + } |
| 76 | + } |
| 77 | +} |
0 commit comments