-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoommf.go
246 lines (224 loc) · 6.54 KB
/
oommf.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// package oommf provides the OVF data format as used by OOMMF.
package oommf
import (
"bufio"
"fmt"
"github.com/mumax/3/data"
"github.com/mumax/3/util"
"io"
"os"
"strconv"
"strings"
)
// Read any OOMMF file, autodetect OVF1/OVF2 format
func Read(in io.Reader) (s *data.Slice, meta data.Meta, err error) {
//in := fullReader{bufio.NewReader(in_)}
info := readHeader(in)
n := info.Size
c := info.StepSize
if c == [3]float64{0, 0, 0} {
c = [3]float64{1, 1, 1} // default (presumably unitless) cell size
}
data_ := data.NewSlice(info.NComp, n)
format := strings.ToLower(info.Format)
ovf := info.OVF
switch {
default:
panic(fmt.Sprint("unknown format: OVF", ovf, " ", format))
case format == "text":
readOVFDataText(in, data_)
case format == "binary 4" && ovf == 1:
readOVF1DataBinary4(in, data_)
case format == "binary 8" && ovf == 1:
readOVF1DataBinary8(in, data_)
case format == "binary 4" && ovf == 2:
readOVF2DataBinary4(in, data_)
case format == "binary 8" && ovf == 2:
readOVF2DataBinary8(in, data_)
}
return data_, data.Meta{Name: info.Title, Time: info.TotalTime, Unit: info.ValueUnit, CellSize: info.StepSize}, nil
}
func ReadFile(fname string) (*data.Slice, data.Meta, error) {
f, err := os.Open(fname)
if err != nil {
return nil, data.Meta{}, err
}
defer f.Close()
return Read(bufio.NewReader(f))
}
func MustReadFile(fname string) (*data.Slice, data.Meta) {
s, t, err := ReadFile(fname)
util.FatalErr(err)
return s, t
}
// omf.Info represents the header part of an omf file.
// TODO: add Err to return error status
// Perhaps CheckErr() func
type Info struct {
Desc map[string]interface{}
Title string
NComp int
Size [3]int
ValueMultiplier float32
ValueUnit string
Format string // binary or text
OVF int
TotalTime float64
StageTime float64
SizeofFloat int // 4/8
StepSize [3]float64
MeshUnit string
}
// Parses the header part of the OVF1/OVF2 file
func readHeader(in io.Reader) *Info {
desc := make(map[string]interface{})
info := new(Info)
info.Desc = desc
line, eof := readLine(in)
switch strings.ToLower(line) {
default:
panic("unknown header: " + line)
case "# oommf ovf 2.0":
info.OVF = 2
case "# oommf: rectangular mesh v1.0":
info.OVF = 1
info.NComp = 3 // OVF1 only supports vector
}
line, eof = readLine(in)
for !eof && !isHeaderEnd(line) {
key, value := parseHeaderLine(line)
switch strings.ToLower(key) {
default:
panic("Unknown key: " + key)
// ignored
case "oommf", "segment count", "begin", "meshtype", "xbase", "ybase", "zbase", "xmin", "ymin", "zmin", "xmax", "ymax", "zmax", "valuerangeminmag", "valuerangemaxmag", "end": // ignored (OVF1)
case "", "valuelabels": // ignored (OVF2)
case "title":
info.Title = value
case "valueunits":
info.ValueUnit = strings.Split(value, " ")[0] // take unit of first component, we don't support per-component units
case "valuedim":
info.NComp = atoi(value)
case "xnodes":
info.Size[X] = atoi(value)
case "ynodes":
info.Size[Y] = atoi(value)
case "znodes":
info.Size[Z] = atoi(value)
case "xstepsize":
info.StepSize[X] = atof(value)
case "ystepsize":
info.StepSize[Y] = atof(value)
case "zstepsize":
info.StepSize[Z] = atof(value)
case "valuemultiplier":
case "valueunit":
case "meshunit":
// desc tags: parse further and add to metadata table
case "desc":
strs := strings.SplitN(value, ":", 2)
desc_key := strings.Trim(strs[0], "# ")
// Desc tag does not neccesarily have a key:value layout.
// If not, we use an empty value string.
desc_value := ""
if len(strs) > 1 {
desc_value = strings.Trim(strs[1], "# ")
}
desc[desc_key] = desc_value
}
line, eof = readLine(in)
}
// the remaining line should now be the begin:data clause
key, value := parseHeaderLine(line)
value = strings.TrimSpace(value)
strs := strings.SplitN(value, " ", 3)
if strings.ToLower(key) != "begin" || strings.ToLower(strs[0]) != "data" {
panic("Expected: Begin: Data")
}
info.Format = strings.ToLower(strs[1])
if len(strs) >= 3 { // dataformat for text is empty
info.Format = "binary " + strs[2] // binary + 4 or 8
} else {
info.Format = "text"
}
// OVF1-style time info
if t1, ok := info.Desc["Time (s)"]; ok {
timestr := fmt.Sprint(t1)
t, _ := strconv.ParseFloat(timestr, 64)
info.TotalTime = t
}
// OVF2-style time info
if t2, ok := info.Desc["Total simulation time"]; ok {
timestr := fmt.Sprint(t2)
words := strings.Split(timestr, " ")
t, _ := strconv.ParseFloat(words[0], 64)
info.TotalTime = t
}
return info
}
// INTERNAL: Splits "# key: value" into "key", "value".
// Both may be empty
func parseHeaderLine(str string) (key, value string) {
strs := strings.SplitN(str, ":", 2)
key = strings.Trim(strs[0], "# ")
if len(strs) != 2 {
return key, ""
}
value = strings.Trim(strs[1], "# ")
return key, value
}
// INTERNAL: true if line starts with "# begin:data"
func isHeaderEnd(str string) bool {
str = strings.ToLower(strings.Trim(str, "# "))
str = strings.Replace(str, " ", "", -1)
return strings.HasPrefix(str, "begin:data")
}
const OVF_CONTROL_NUMBER_4 = 1234567.0 // The omf format requires the first encoded number in the binary data section to be this control number
const OVF_CONTROL_NUMBER_8 = 123456789012345.0
// read data block in text format, for OVF1 and OVF2
func readOVFDataText(in io.Reader, t *data.Slice) {
size := t.Size()
data := t.Tensors()
for iz := 0; iz < size[Z]; iz++ {
for iy := 0; iy < size[Y]; iy++ {
for ix := 0; ix < size[X]; ix++ {
for c := 0; c < t.NComp(); c++ {
_, err := fmt.Fscan(in, &data[c][iz][iy][ix])
if err != nil {
panic(err)
}
}
}
}
}
}
// write data block in text format, for OVF1 and OVF2
func writeOVFText(out io.Writer, tens *data.Slice) (err error) {
data := tens.Tensors()
gridsize := tens.Size()
ncomp := tens.NComp()
// Here we loop over X,Y,Z, not Z,Y,X, because
// internal in C-order == external in Fortran-order
for iz := 0; iz < gridsize[Z]; iz++ {
for iy := 0; iy < gridsize[Y]; iy++ {
for ix := 0; ix < gridsize[X]; ix++ {
for c := 0; c < ncomp; c++ {
_, err = fmt.Fprint(out, data[c][iz][iy][ix], " ")
}
_, err = fmt.Fprint(out, "\n")
}
}
}
return
}
// Writes a header key/value pair to out:
// # Key: Value
func hdr(out io.Writer, key string, value ...interface{}) {
_, err := fmt.Fprint(out, "# ", key, ": ")
util.FatalErr(err)
_, err = fmt.Fprintln(out, value...)
util.FatalErr(err)
}
func dsc(out io.Writer, k, v interface{}) {
hdr(out, "Desc", k, ": ", v)
}