-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvis_feature_map.py
168 lines (140 loc) · 5.71 KB
/
vis_feature_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from argparse import ArgumentParser
from typing import Type
import mmcv
import torch
import torch.nn as nn
import numpy as np
from mmengine.model import revert_sync_batchnorm
from mmengine.structures import PixelData
from mmseg.apis import inference_model, init_model
from mmseg.structures import SegDataSample
from mmseg.utils import register_all_modules
from mmseg.visualization import SegLocalVisualizer
from src.apis import inference_model
class Recorder:
"""record the forward output feature map and save to data_buffer."""
def __init__(self) -> None:
self.data_buffer = list()
def __enter__(self, ):
self._data_buffer = list()
def record_data_hook(self, model: nn.Module, input: Type, output: Type):
self.data_buffer.append(output)
def __exit__(self, *args, **kwargs):
pass
def visualize(args, model, recorder, result):
seg_visualizer = SegLocalVisualizer(
vis_backends=[
# dict(type='WandbVisBackend'),
dict(type='LocalVisBackend'),
],
save_dir='UperNet_Featmap',
alpha=0.5)
seg_visualizer.dataset_meta = dict(classes=model.dataset_meta['classes'],
palette=model.dataset_meta['palette'])
image = mmcv.imread(args.img1, 'color')
image2 = mmcv.imread(args.img2, 'color')
seg_visualizer.add_datasample(name='predict',
image=image,
data_sample=result,
draw_gt=False,
draw_pred=True,
wait_time=0,
out_file=None,
show=False,
withLabels=False)
# add feature map to wandb visualizer
for i in range(len(recorder.data_buffer)):
rec = recorder.data_buffer[i]
if isinstance(rec, torch.Tensor):
feature = rec[0] # remove the batch
drawn_img = seg_visualizer.draw_featmap(
feature, image, channel_reduction='select_max')
seg_visualizer.add_image(f'feature_map{i}', drawn_img)
elif isinstance(rec, (list, tuple)):
for j, f in enumerate(rec):
feature = f[0] # remove the batch
drawn_img = seg_visualizer.draw_featmap(
feature, image, channel_reduction='select_max')
seg_visualizer.add_image(f'feature_map{i}_{j}', drawn_img)
if args.gt_mask:
sem_seg = mmcv.imread(args.gt_mask, 'unchanged')
sem_seg -= 1
sem_seg = torch.from_numpy(sem_seg)
gt_mask = dict(data=sem_seg)
gt_mask = PixelData(**gt_mask)
data_sample = SegDataSample()
data_sample.gt_sem_seg = gt_mask
seg_visualizer.add_datasample(name='gt_mask',
image=image,
data_sample=data_sample,
draw_gt=True,
draw_pred=False,
wait_time=0,
out_file=None,
show=False,
withLabels=False)
seg_visualizer.add_image('image', image)
seg_visualizer.add_image('image2', image2)
def main():
parser = ArgumentParser(
description='Draw the Feature Map During Inference')
parser.add_argument('img1', help='Image file')
parser.add_argument('img2', help='Image file')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument('--gt_mask', default=None, help='Path of gt mask file')
parser.add_argument('--out-file', default=None, help='Path to output file')
parser.add_argument('--device',
default='cuda:0',
help='Device used for inference')
parser.add_argument(
'--opacity',
type=float,
default=0.5,
help='Opacity of painted segmentation map. In (0, 1] range.')
parser.add_argument('--title',
default='result',
help='The image identifier.')
args = parser.parse_args()
register_all_modules()
# build the model from a config file and a checkpoint file
model = init_model(args.config, args.checkpoint, device=args.device)
if args.device == 'cpu':
model = revert_sync_batchnorm(model)
# show all named module in the model and use it in source list below
for name, module in model.named_modules():
print(name)
source = [
# UperNet
'backbone.backbone.stages.3',
'backbone.backbone2.stages.3',
# # ConvNeXt
# 'backbone.backbone.stages.3',
# 'backbone.backbone2.stages.3',
# # 'backbone.backbone.stages.2',
# # 'backbone.backbone.stages.0',
# 'backbone.FRMs.3',
# 'backbone.FFMs.3',
# 'decode_head.fpn_bottleneck',
# # CMX
# 'backbone.block3_out',
# 'backbone.extra_block3_out',
# 'backbone.FRMs.2',
# 'backbone.FFMs.2',
]
source = dict.fromkeys(source)
count = 0
recorder = Recorder()
# registry the forward hook
for name, module in model.named_modules():
if name in source:
count += 1
module.register_forward_hook(recorder.record_data_hook)
if count == len(source):
break
with recorder:
# test a single image, and record feature map to data_buffer
result = inference_model(model, args.img1, args.img2)
visualize(args, model, recorder, result)
if __name__ == '__main__':
main()