forked from tensorflow/model-analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
318 lines (267 loc) · 10.6 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sets up TFMA package for Jupyter notebook integration.
The widget is based on the template generated from jupyter-widget's
widget-cookiecutter.
"""
from __future__ import print_function
import os
import platform
import subprocess
import sys
from distutils import log
from distutils.command.build_py import build_py as _build_py
from distutils.spawn import find_executable
from setuptools import Command
from setuptools import find_packages
from setuptools import setup
from setuptools.command.egg_info import egg_info
from setuptools.command.sdist import sdist
# Find the Protocol Compiler.
if 'PROTOC' in os.environ and os.path.exists(os.environ['PROTOC']):
protoc = os.environ['PROTOC']
elif os.path.exists('../src/protoc'):
protoc = '../src/protoc'
elif os.path.exists('../src/protoc.exe'):
protoc = '../src/protoc.exe'
elif os.path.exists('../vsprojects/Debug/protoc.exe'):
protoc = '../vsprojects/Debug/protoc.exe'
elif os.path.exists('../vsprojects/Release/protoc.exe'):
protoc = '../vsprojects/Release/protoc.exe'
else:
protoc = find_executable('protoc')
# Get version from version module.
with open('tensorflow_model_analysis/version.py') as fp:
globals_dict = {}
exec(fp.read(), globals_dict) # pylint: disable=exec-used
__version__ = globals_dict['VERSION_STRING']
here = os.path.dirname(os.path.abspath(__file__))
node_root = os.path.join(here, 'tensorflow_model_analysis', 'notebook',
'jupyter', 'js')
is_repo = os.path.exists(os.path.join(here, '.git'))
npm_path = os.pathsep.join([
os.path.join(node_root, 'node_modules', '.bin'),
os.environ.get('PATH', os.defpath),
])
# Set this to true if ipywidgets js should be built. This would require nodejs.
build_js = False
log.set_verbosity(log.DEBUG)
log.info('setup.py entered')
log.info('$PATH=%s' % os.environ['PATH'])
def generate_proto(source, require=True):
"""Invokes the Protocol Compiler to generate a _pb2.py."""
# Does nothing if the output already exists and is newer than
# the input.
if not require and not os.path.exists(source):
return
output = source.replace('.proto', '_pb2.py').replace('../src/', '')
if (not os.path.exists(output) or
(os.path.exists(source) and
os.path.getmtime(source) > os.path.getmtime(output))):
print('Generating %s...' % output)
if not os.path.exists(source):
sys.stderr.write("Can't find required file: %s\n" % source)
sys.exit(-1)
if protoc is None:
sys.stderr.write(
'protoc is not installed nor found in ../src. Please compile it '
'or install the binary package.\n')
sys.exit(-1)
protoc_command = [protoc, '-I../src', '-I.', '--python_out=.', source]
if subprocess.call(protoc_command) != 0:
sys.exit(-1)
class build_py(_build_py): # pylint: disable=invalid-name
def run(self):
# Generate necessary .proto file if it doesn't exist.
generate_proto('tensorflow_model_analysis/proto/metrics_for_slice.proto',
False)
# _build_py is an old-style class, so super() doesn't work.
_build_py.run(self)
def js_prerelease(command, strict=False):
"""Decorator for building minified js/css prior to another command."""
class DecoratedCommand(command):
"""Decorated command."""
def run(self):
jsdeps = self.distribution.get_command_obj('jsdeps')
if not is_repo and all(os.path.exists(t) for t in jsdeps.targets):
# sdist, nothing to do
command.run(self)
return
try:
self.distribution.run_command('jsdeps')
except Exception as e: # pylint: disable=broad-except
missing = [t for t in jsdeps.targets if not os.path.exists(t)]
if strict or missing:
log.warn('rebuilding js and css failed')
if missing:
log.error('missing files: %s' % missing)
raise e
else:
log.warn('rebuilding js and css failed (not a problem)')
log.warn(str(e))
command.run(self)
update_package_data(self.distribution)
return DecoratedCommand
def update_package_data(distribution):
"""update package_data to catch changes during setup."""
build_py_cmd = distribution.get_command_obj('build_py')
# distribution.package_data = find_package_data()
# re-init build_py options which load package_data
build_py_cmd.finalize_options()
class NPM(Command):
"""NPM builder.
Builds the js and css using npm.
"""
description = 'install package.json dependencies using npm'
user_options = []
node_modules = os.path.join(node_root, 'node_modules')
targets = [
os.path.join(here, 'tensorflow_model_analysis', 'static', 'extension.js'),
os.path.join(here, 'tensorflow_model_analysis', 'static', 'index.js'),
os.path.join(here, 'tensorflow_model_analysis', 'static',
'vulcanized_tfma.js'),
]
def initialize_options(self):
pass
def finalize_options(self):
pass
def get_npm_name(self):
npm_name = 'npm'
if platform.system() == 'Windows':
npm_name = 'npm.cmd'
return npm_name
def has_npm(self):
npm_name = self.get_npm_name()
try:
subprocess.check_call([npm_name, '--version'])
return True
except: # pylint: disable=bare-except
return False
def should_run_npm_install(self):
return self.has_npm()
def run(self):
if not build_js:
return
has_npm = self.has_npm()
if not has_npm:
log.error(
"`npm` unavailable. If you're running this command using sudo, make"
' sure `npm` is available to sudo')
env = os.environ.copy()
env['PATH'] = npm_path
if self.should_run_npm_install():
log.info(
'Installing build dependencies with npm. This may take a while...')
npm_name = self.get_npm_name()
subprocess.check_call([npm_name, 'install'],
cwd=node_root,
stdout=sys.stdout,
stderr=sys.stderr)
os.utime(self.node_modules, None)
for t in self.targets:
if not os.path.exists(t):
msg = 'Missing file: %s' % t
if not has_npm:
msg += ('\nnpm is required to build a development version of a widget'
' extension')
raise ValueError(msg)
# update package data in case this created new files
update_package_data(self.distribution)
# TODO(b/121329572): Remove the following comment after we can guarantee the
# required versions of packages through kokoro release workflow.
# Note: In order for the README to be rendered correctly, make sure to have the
# following minimum required versions of the respective packages when building
# and uploading the zip/wheel package to PyPI:
# setuptools >= 38.6.0, wheel >= 0.31.0, twine >= 1.11.0
# Get the long description from the README file.
with open('README.md') as fp:
_LONG_DESCRIPTION = fp.read()
setup_args = {
'name': 'tensorflow_model_analysis',
'version': __version__,
'description': 'A library for analyzing TensorFlow models',
'long_description': _LONG_DESCRIPTION,
'long_description_content_type': 'text/markdown',
'include_package_data': True,
'data_files': [('share/jupyter/nbextensions/tfma_widget_js', [
'tensorflow_model_analysis/static/extension.js',
'tensorflow_model_analysis/static/index.js',
'tensorflow_model_analysis/static/index.js.map',
'tensorflow_model_analysis/static/vulcanized_tfma.js',
]),],
# Make sure to sync the versions of common dependencies (numpy, six, and
# protobuf) with TF.
'install_requires': [
# Sort alphabetically
'apache-beam[gcp]>=2.12,<3',
'ipywidgets>=7,<8',
'jupyter>=1,<2',
'numpy>=1.14.5,<2',
'protobuf>=3.7,<4',
# TODO(b/126957988): Stop pinning scipy when possible.
'scipy==1.1.0',
# For apitools.
# Note: try version 1.10 if error "metaclass conflict: the
# metaclass of a derived class must be a (non-strict) subclass of the
# metaclasses of all its bases" occurred in future.
'six>=1.9,<2',
# TODO(xinzha): Uncomment this once TF can automatically select between
# CPU and GPU installation.
# 'tensorflow>=1.13,<2',
# TODO(b/68765743): replace it with tfx-base after it's available
# (b/72384547)
'tensorflow-transform>=0.13,<1',
],
'python_requires': '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,<4',
'packages': find_packages(),
'zip_safe': False,
'cmdclass': {
'build_py': js_prerelease(build_py),
'egg_info': js_prerelease(egg_info),
'sdist': js_prerelease(sdist, strict=True),
'jsdeps': NPM,
},
'author': 'Google LLC',
'author_email': '[email protected]',
'license': 'Apache 2.0',
'classifiers': [
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.5',
# TODO(b/125613675): Once Beam supports Python 3.6 and 3.7, uncomment
# these lines.
# 'Programming Language :: Python :: 3.6',
# 'Programming Language :: Python :: 3.7',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Software Development',
'Topic :: Software Development :: Libraries',
'Topic :: Software Development :: Libraries :: Python Modules',
],
'namespace_packages': [],
'requires': [],
'keywords': 'tensorflow model analysis tfx',
'url': 'https://www.tensorflow.org/tfx/model_analysis',
'download_url': 'https://github.com/tensorflow/model-analysis/tags',
}
setup(**setup_args)