forked from commaai/panda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsafety.h
676 lines (583 loc) · 23.7 KB
/
safety.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
#include "safety_declarations.h"
#include "can_definitions.h"
// include the safety policies.
#include "safety/safety_defaults.h"
#include "safety/safety_honda.h"
#include "safety/safety_toyota.h"
#include "safety/safety_tesla.h"
#include "safety/safety_gm.h"
#include "safety/safety_ford.h"
#include "safety/safety_hyundai.h"
#include "safety/safety_chrysler.h"
#include "safety/safety_subaru.h"
#include "safety/safety_subaru_preglobal.h"
#include "safety/safety_mazda.h"
#include "safety/safety_nissan.h"
#include "safety/safety_volkswagen_mqb.h"
#include "safety/safety_volkswagen_pq.h"
#include "safety/safety_elm327.h"
#include "safety/safety_body.h"
// CAN-FD only safety modes
#ifdef CANFD
#include "safety/safety_hyundai_canfd.h"
#endif
// from cereal.car.CarParams.SafetyModel
#define SAFETY_SILENT 0U
#define SAFETY_HONDA_NIDEC 1U
#define SAFETY_TOYOTA 2U
#define SAFETY_ELM327 3U
#define SAFETY_GM 4U
#define SAFETY_HONDA_BOSCH_GIRAFFE 5U
#define SAFETY_FORD 6U
#define SAFETY_HYUNDAI 8U
#define SAFETY_CHRYSLER 9U
#define SAFETY_TESLA 10U
#define SAFETY_SUBARU 11U
#define SAFETY_MAZDA 13U
#define SAFETY_NISSAN 14U
#define SAFETY_VOLKSWAGEN_MQB 15U
#define SAFETY_ALLOUTPUT 17U
#define SAFETY_GM_ASCM 18U
#define SAFETY_NOOUTPUT 19U
#define SAFETY_HONDA_BOSCH 20U
#define SAFETY_VOLKSWAGEN_PQ 21U
#define SAFETY_SUBARU_PREGLOBAL 22U
#define SAFETY_HYUNDAI_LEGACY 23U
#define SAFETY_HYUNDAI_COMMUNITY 24U
#define SAFETY_STELLANTIS 25U
#define SAFETY_FAW 26U
#define SAFETY_BODY 27U
#define SAFETY_HYUNDAI_CANFD 28U
uint16_t current_safety_mode = SAFETY_SILENT;
uint16_t current_safety_param = 0;
const safety_hooks *current_hooks = &nooutput_hooks;
const addr_checks *current_rx_checks = &default_rx_checks;
int safety_rx_hook(CANPacket_t *to_push) {
bool controls_allowed_prev = controls_allowed;
int ret = current_hooks->rx(to_push);
// reset mismatches on rising edge of controls_allowed to avoid rare race condition
if (controls_allowed && !controls_allowed_prev) {
heartbeat_engaged_mismatches = 0;
}
return ret;
}
int safety_tx_hook(CANPacket_t *to_send) {
return (relay_malfunction ? -1 : current_hooks->tx(to_send));
}
int safety_tx_lin_hook(int lin_num, uint8_t *data, int len) {
return current_hooks->tx_lin(lin_num, data, len);
}
int safety_fwd_hook(int bus_num, int addr) {
return (relay_malfunction ? -1 : current_hooks->fwd(bus_num, addr));
}
bool get_longitudinal_allowed(void) {
return controls_allowed && !gas_pressed_prev;
}
// Given a CRC-8 poly, generate a static lookup table to use with a fast CRC-8
// algorithm. Called at init time for safety modes using CRC-8.
void gen_crc_lookup_table_8(uint8_t poly, uint8_t crc_lut[]) {
for (int i = 0; i < 256; i++) {
uint8_t crc = i;
for (int j = 0; j < 8; j++) {
if ((crc & 0x80U) != 0U) {
crc = (uint8_t)((crc << 1) ^ poly);
} else {
crc <<= 1;
}
}
crc_lut[i] = crc;
}
}
void gen_crc_lookup_table_16(uint16_t poly, uint16_t crc_lut[]) {
for (uint16_t i = 0; i < 256U; i++) {
uint16_t crc = i << 8U;
for (uint16_t j = 0; j < 8U; j++) {
if ((crc & 0x8000U) != 0U) {
crc = (uint16_t)((crc << 1) ^ poly);
} else {
crc <<= 1;
}
}
crc_lut[i] = crc;
}
}
bool msg_allowed(CANPacket_t *to_send, const CanMsg msg_list[], int len) {
int addr = GET_ADDR(to_send);
int bus = GET_BUS(to_send);
int length = GET_LEN(to_send);
bool allowed = false;
for (int i = 0; i < len; i++) {
if ((addr == msg_list[i].addr) && (bus == msg_list[i].bus) && (length == msg_list[i].len)) {
allowed = true;
break;
}
}
return allowed;
}
int get_addr_check_index(CANPacket_t *to_push, AddrCheckStruct addr_list[], const int len) {
int bus = GET_BUS(to_push);
int addr = GET_ADDR(to_push);
int length = GET_LEN(to_push);
int index = -1;
for (int i = 0; i < len; i++) {
// if multiple msgs are allowed, determine which one is present on the bus
if (!addr_list[i].msg_seen) {
for (uint8_t j = 0U; (j < MAX_ADDR_CHECK_MSGS) && (addr_list[i].msg[j].addr != 0); j++) {
if ((addr == addr_list[i].msg[j].addr) && (bus == addr_list[i].msg[j].bus) &&
(length == addr_list[i].msg[j].len)) {
addr_list[i].index = j;
addr_list[i].msg_seen = true;
break;
}
}
}
if (addr_list[i].msg_seen) {
int idx = addr_list[i].index;
if ((addr == addr_list[i].msg[idx].addr) && (bus == addr_list[i].msg[idx].bus) &&
(length == addr_list[i].msg[idx].len)) {
index = i;
break;
}
}
}
return index;
}
// 1Hz safety function called by main. Now just a check for lagging safety messages
void safety_tick(const addr_checks *rx_checks) {
bool rx_checks_invalid = false;
uint32_t ts = microsecond_timer_get();
if (rx_checks != NULL) {
for (int i=0; i < rx_checks->len; i++) {
uint32_t elapsed_time = get_ts_elapsed(ts, rx_checks->check[i].last_timestamp);
// lag threshold is max of: 1s and MAX_MISSED_MSGS * expected timestep.
// Quite conservative to not risk false triggers.
// 2s of lag is worse case, since the function is called at 1Hz
bool lagging = elapsed_time > MAX(rx_checks->check[i].msg[rx_checks->check[i].index].expected_timestep * MAX_MISSED_MSGS, 1e6);
rx_checks->check[i].lagging = lagging;
if (lagging) {
controls_allowed = 0;
}
if (lagging || !is_msg_valid(rx_checks->check, i)) {
rx_checks_invalid = true;
}
}
}
safety_rx_checks_invalid = rx_checks_invalid;
}
void update_counter(AddrCheckStruct addr_list[], int index, uint8_t counter) {
if (index != -1) {
uint8_t expected_counter = (addr_list[index].last_counter + 1U) % (addr_list[index].msg[addr_list[index].index].max_counter + 1U);
addr_list[index].wrong_counters += (expected_counter == counter) ? -1 : 1;
addr_list[index].wrong_counters = MAX(MIN(addr_list[index].wrong_counters, MAX_WRONG_COUNTERS), 0);
addr_list[index].last_counter = counter;
}
}
bool is_msg_valid(AddrCheckStruct addr_list[], int index) {
bool valid = true;
if (index != -1) {
if (!addr_list[index].valid_checksum || !addr_list[index].valid_quality_flag || (addr_list[index].wrong_counters >= MAX_WRONG_COUNTERS)) {
valid = false;
controls_allowed = 0;
}
}
return valid;
}
void update_addr_timestamp(AddrCheckStruct addr_list[], int index) {
if (index != -1) {
uint32_t ts = microsecond_timer_get();
addr_list[index].last_timestamp = ts;
}
}
bool addr_safety_check(CANPacket_t *to_push,
const addr_checks *rx_checks,
uint32_t (*get_checksum)(CANPacket_t *to_push),
uint32_t (*compute_checksum)(CANPacket_t *to_push),
uint8_t (*get_counter)(CANPacket_t *to_push),
bool (*get_quality_flag_valid)(CANPacket_t *to_push)) {
int index = get_addr_check_index(to_push, rx_checks->check, rx_checks->len);
update_addr_timestamp(rx_checks->check, index);
if (index != -1) {
// checksum check
if ((get_checksum != NULL) && (compute_checksum != NULL) && rx_checks->check[index].msg[rx_checks->check[index].index].check_checksum) {
uint32_t checksum = get_checksum(to_push);
uint32_t checksum_comp = compute_checksum(to_push);
rx_checks->check[index].valid_checksum = checksum_comp == checksum;
} else {
rx_checks->check[index].valid_checksum = true;
}
// counter check (max_counter == 0 means skip check)
if ((get_counter != NULL) && (rx_checks->check[index].msg[rx_checks->check[index].index].max_counter > 0U)) {
uint8_t counter = get_counter(to_push);
update_counter(rx_checks->check, index, counter);
} else {
rx_checks->check[index].wrong_counters = 0U;
}
// quality flag check
if ((get_quality_flag_valid != NULL) && rx_checks->check[index].msg[rx_checks->check[index].index].quality_flag) {
rx_checks->check[index].valid_quality_flag = get_quality_flag_valid(to_push);
} else {
rx_checks->check[index].valid_quality_flag = true;
}
}
return is_msg_valid(rx_checks->check, index);
}
void generic_rx_checks(bool stock_ecu_detected) {
// exit controls on rising edge of gas press
if (gas_pressed && !gas_pressed_prev && !(alternative_experience & ALT_EXP_DISABLE_DISENGAGE_ON_GAS)) {
controls_allowed = 0;
}
gas_pressed_prev = gas_pressed;
// exit controls on rising edge of brake press
if (brake_pressed && (!brake_pressed_prev || vehicle_moving)) {
controls_allowed = 0;
}
brake_pressed_prev = brake_pressed;
// exit controls on rising edge of regen paddle
if (regen_braking && (!regen_braking_prev || vehicle_moving)) {
controls_allowed = 0;
}
regen_braking_prev = regen_braking;
// check if stock ECU is on bus broken by car harness
if ((safety_mode_cnt > RELAY_TRNS_TIMEOUT) && stock_ecu_detected) {
relay_malfunction_set();
}
}
void relay_malfunction_set(void) {
relay_malfunction = true;
fault_occurred(FAULT_RELAY_MALFUNCTION);
}
void relay_malfunction_reset(void) {
relay_malfunction = false;
fault_recovered(FAULT_RELAY_MALFUNCTION);
}
typedef struct {
uint16_t id;
const safety_hooks *hooks;
} safety_hook_config;
const safety_hook_config safety_hook_registry[] = {
{SAFETY_SILENT, &nooutput_hooks},
{SAFETY_HONDA_NIDEC, &honda_nidec_hooks},
{SAFETY_TOYOTA, &toyota_hooks},
{SAFETY_ELM327, &elm327_hooks},
{SAFETY_GM, &gm_hooks},
{SAFETY_HONDA_BOSCH, &honda_bosch_hooks},
{SAFETY_HYUNDAI, &hyundai_hooks},
{SAFETY_CHRYSLER, &chrysler_hooks},
{SAFETY_SUBARU, &subaru_hooks},
{SAFETY_VOLKSWAGEN_MQB, &volkswagen_mqb_hooks},
{SAFETY_NISSAN, &nissan_hooks},
{SAFETY_NOOUTPUT, &nooutput_hooks},
{SAFETY_HYUNDAI_LEGACY, &hyundai_legacy_hooks},
{SAFETY_MAZDA, &mazda_hooks},
{SAFETY_BODY, &body_hooks},
{SAFETY_FORD, &ford_hooks},
#ifdef CANFD
{SAFETY_HYUNDAI_CANFD, &hyundai_canfd_hooks},
#endif
#ifdef ALLOW_DEBUG
{SAFETY_TESLA, &tesla_hooks},
{SAFETY_SUBARU_PREGLOBAL, &subaru_preglobal_hooks},
{SAFETY_VOLKSWAGEN_PQ, &volkswagen_pq_hooks},
{SAFETY_ALLOUTPUT, &alloutput_hooks},
#endif
};
int set_safety_hooks(uint16_t mode, uint16_t param) {
// reset state set by safety mode
safety_mode_cnt = 0U;
relay_malfunction = false;
gas_interceptor_detected = false;
gas_interceptor_prev = 0;
gas_pressed = false;
gas_pressed_prev = false;
brake_pressed = false;
brake_pressed_prev = false;
regen_braking = false;
regen_braking_prev = false;
cruise_engaged_prev = false;
vehicle_moving = false;
acc_main_on = false;
cruise_button_prev = 0;
desired_torque_last = 0;
rt_torque_last = 0;
ts_angle_last = 0;
desired_angle_last = 0;
ts_torque_check_last = 0;
ts_steer_req_mismatch_last = 0;
valid_steer_req_count = 0;
invalid_steer_req_count = 0;
vehicle_speed.min = 0;
vehicle_speed.max = 0;
torque_meas.min = 0;
torque_meas.max = 0;
torque_driver.min = 0;
torque_driver.max = 0;
angle_meas.min = 0;
angle_meas.max = 0;
controls_allowed = false;
relay_malfunction_reset();
safety_rx_checks_invalid = false;
int set_status = -1; // not set
int hook_config_count = sizeof(safety_hook_registry) / sizeof(safety_hook_config);
for (int i = 0; i < hook_config_count; i++) {
if (safety_hook_registry[i].id == mode) {
current_hooks = safety_hook_registry[i].hooks;
current_safety_mode = mode;
current_safety_param = param;
set_status = 0; // set
}
}
if ((set_status == 0) && (current_hooks->init != NULL)) {
current_rx_checks = current_hooks->init(param);
// reset message index and seen flags in addr struct
for (int j = 0; j < current_rx_checks->len; j++) {
current_rx_checks->check[j].index = 0;
current_rx_checks->check[j].msg_seen = false;
}
}
return set_status;
}
// convert a trimmed integer to signed 32 bit int
int to_signed(int d, int bits) {
int d_signed = d;
if (d >= (1 << MAX((bits - 1), 0))) {
d_signed = d - (1 << MAX(bits, 0));
}
return d_signed;
}
// given a new sample, update the sample_t struct
void update_sample(struct sample_t *sample, int sample_new) {
int sample_size = sizeof(sample->values) / sizeof(sample->values[0]);
for (int i = sample_size - 1; i > 0; i--) {
sample->values[i] = sample->values[i-1];
}
sample->values[0] = sample_new;
// get the minimum and maximum measured samples
sample->min = sample->values[0];
sample->max = sample->values[0];
for (int i = 1; i < sample_size; i++) {
if (sample->values[i] < sample->min) {
sample->min = sample->values[i];
}
if (sample->values[i] > sample->max) {
sample->max = sample->values[i];
}
}
}
bool max_limit_check(int val, const int MAX_VAL, const int MIN_VAL) {
return (val > MAX_VAL) || (val < MIN_VAL);
}
// check that commanded torque value isn't too far from measured
bool dist_to_meas_check(int val, int val_last, struct sample_t *val_meas,
const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ERROR) {
// *** val rate limit check ***
int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP;
// if we've exceeded the meas val, we must start moving toward 0
int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN, MAX(val_meas->max, 0) + MAX_ERROR));
int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN, MIN(val_meas->min, 0) - MAX_ERROR));
// check for violation
return max_limit_check(val, highest_allowed, lowest_allowed);
}
// check that commanded value isn't fighting against driver
bool driver_limit_check(int val, int val_last, struct sample_t *val_driver,
const int MAX_VAL, const int MAX_RATE_UP, const int MAX_RATE_DOWN,
const int MAX_ALLOWANCE, const int DRIVER_FACTOR) {
// torque delta/rate limits
int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP;
// driver
int driver_max_limit = MAX_VAL + (MAX_ALLOWANCE + val_driver->max) * DRIVER_FACTOR;
int driver_min_limit = -MAX_VAL + (-MAX_ALLOWANCE + val_driver->min) * DRIVER_FACTOR;
// if we've exceeded the applied torque, we must start moving toward 0
int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN,
MAX(driver_max_limit, 0)));
int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN,
MIN(driver_min_limit, 0)));
// check for violation
return max_limit_check(val, highest_allowed, lowest_allowed);
}
// real time check, mainly used for steer torque rate limiter
bool rt_rate_limit_check(int val, int val_last, const int MAX_RT_DELTA) {
// *** torque real time rate limit check ***
int highest_val = MAX(val_last, 0) + MAX_RT_DELTA;
int lowest_val = MIN(val_last, 0) - MAX_RT_DELTA;
// check for violation
return max_limit_check(val, highest_val, lowest_val);
}
// interp function that holds extreme values
float interpolate(struct lookup_t xy, float x) {
int size = sizeof(xy.x) / sizeof(xy.x[0]);
float ret = xy.y[size - 1]; // default output is last point
// x is lower than the first point in the x array. Return the first point
if (x <= xy.x[0]) {
ret = xy.y[0];
} else {
// find the index such that (xy.x[i] <= x < xy.x[i+1]) and linearly interp
for (int i=0; i < (size - 1); i++) {
if (x < xy.x[i+1]) {
float x0 = xy.x[i];
float y0 = xy.y[i];
float dx = xy.x[i+1] - x0;
float dy = xy.y[i+1] - y0;
// dx should not be zero as xy.x is supposed to be monotonic
if (dx <= 0.) {
dx = 0.0001;
}
ret = (dy * (x - x0) / dx) + y0;
break;
}
}
}
return ret;
}
int ROUND(float val) {
return val + ((val > 0.0) ? 0.5 : -0.5);
}
// Safety checks for longitudinal actuation
bool longitudinal_accel_checks(int desired_accel, const LongitudinalLimits limits) {
bool accel_valid = get_longitudinal_allowed() && !max_limit_check(desired_accel, limits.max_accel, limits.min_accel);
bool accel_inactive = desired_accel == limits.inactive_accel;
return !(accel_valid || accel_inactive);
}
bool longitudinal_speed_checks(int desired_speed, const LongitudinalLimits limits) {
return !get_longitudinal_allowed() && (desired_speed != limits.inactive_speed);
}
bool longitudinal_gas_checks(int desired_gas, const LongitudinalLimits limits) {
bool gas_valid = get_longitudinal_allowed() && !max_limit_check(desired_gas, limits.max_gas, limits.min_gas);
bool gas_inactive = desired_gas == limits.inactive_gas;
return !(gas_valid || gas_inactive);
}
bool longitudinal_brake_checks(int desired_brake, const LongitudinalLimits limits) {
bool violation = false;
violation |= !get_longitudinal_allowed() && (desired_brake != 0);
violation |= desired_brake > limits.max_brake;
return violation;
}
bool longitudinal_interceptor_checks(CANPacket_t *to_send) {
return !get_longitudinal_allowed() && (GET_BYTE(to_send, 0) || GET_BYTE(to_send, 1));
}
// Safety checks for torque-based steering commands
bool steer_torque_cmd_checks(int desired_torque, int steer_req, const SteeringLimits limits) {
bool violation = false;
uint32_t ts = microsecond_timer_get();
if (controls_allowed) {
// *** global torque limit check ***
violation |= max_limit_check(desired_torque, limits.max_steer, -limits.max_steer);
// *** torque rate limit check ***
if (limits.type == TorqueDriverLimited) {
violation |= driver_limit_check(desired_torque, desired_torque_last, &torque_driver,
limits.max_steer, limits.max_rate_up, limits.max_rate_down,
limits.driver_torque_allowance, limits.driver_torque_factor);
} else {
violation |= dist_to_meas_check(desired_torque, desired_torque_last, &torque_meas,
limits.max_rate_up, limits.max_rate_down, limits.max_torque_error);
}
desired_torque_last = desired_torque;
// *** torque real time rate limit check ***
violation |= rt_rate_limit_check(desired_torque, rt_torque_last, limits.max_rt_delta);
// every RT_INTERVAL set the new limits
uint32_t ts_elapsed = get_ts_elapsed(ts, ts_torque_check_last);
if (ts_elapsed > limits.max_rt_interval) {
rt_torque_last = desired_torque;
ts_torque_check_last = ts;
}
}
// no torque if controls is not allowed
if (!controls_allowed && (desired_torque != 0)) {
violation = true;
}
// certain safety modes set their steer request bit low for one or more frame at a
// predefined max frequency to avoid steering faults in certain situations
bool steer_req_mismatch = (steer_req == 0) && (desired_torque != 0);
if (!limits.has_steer_req_tolerance) {
if (steer_req_mismatch) {
violation = true;
}
} else {
if (steer_req_mismatch) {
if (invalid_steer_req_count == 0) {
// disallow torque cut if not enough recent matching steer_req messages
if (valid_steer_req_count < limits.min_valid_request_frames) {
violation = true;
}
// or we've cut torque too recently in time
uint32_t ts_elapsed = get_ts_elapsed(ts, ts_steer_req_mismatch_last);
if (ts_elapsed < limits.min_valid_request_rt_interval) {
violation = true;
}
} else {
// or we're cutting more frames consecutively than allowed
if (invalid_steer_req_count >= limits.max_invalid_request_frames) {
violation = true;
}
}
valid_steer_req_count = 0;
ts_steer_req_mismatch_last = ts;
invalid_steer_req_count = MIN(invalid_steer_req_count + 1, limits.max_invalid_request_frames);
} else {
valid_steer_req_count = MIN(valid_steer_req_count + 1, limits.min_valid_request_frames);
invalid_steer_req_count = 0;
}
}
// reset to 0 if either controls is not allowed or there's a violation
if (violation || !controls_allowed) {
valid_steer_req_count = 0;
invalid_steer_req_count = 0;
desired_torque_last = 0;
rt_torque_last = 0;
ts_torque_check_last = ts;
ts_steer_req_mismatch_last = ts;
}
return violation;
}
// Safety checks for angle-based steering commands
bool steer_angle_cmd_checks(int desired_angle, bool steer_control_enabled, const SteeringLimits limits) {
bool violation = false;
if (controls_allowed && steer_control_enabled) {
// convert floating point angle rate limits to integers in the scale of the desired angle on CAN,
// add 1 to not false trigger the violation. also fudge the speed by 1 m/s so rate limits are
// always slightly above openpilot's in case we read an updated speed in between angle commands
// TODO: this speed fudge can be much lower, look at data to determine the lowest reasonable offset
int delta_angle_up = (interpolate(limits.angle_rate_up_lookup, (vehicle_speed.min / VEHICLE_SPEED_FACTOR) - 1.) * limits.angle_deg_to_can) + 1.;
int delta_angle_down = (interpolate(limits.angle_rate_down_lookup, (vehicle_speed.min / VEHICLE_SPEED_FACTOR) - 1.) * limits.angle_deg_to_can) + 1.;
// allow down limits at zero since small floats will be rounded to 0
int highest_desired_angle = desired_angle_last + ((desired_angle_last > 0) ? delta_angle_up : delta_angle_down);
int lowest_desired_angle = desired_angle_last - ((desired_angle_last >= 0) ? delta_angle_down : delta_angle_up);
// check that commanded angle value isn't too far from measured, used to limit torque for some safety modes
// ensure we start moving in direction of meas while respecting rate limits if error is exceeded
if (limits.enforce_angle_error && ((vehicle_speed.values[0] / VEHICLE_SPEED_FACTOR) > limits.angle_error_min_speed)) {
// the rate limits above are liberally above openpilot's to avoid false positives.
// likewise, allow a lower rate for moving towards meas when error is exceeded
int delta_angle_up_lower = interpolate(limits.angle_rate_up_lookup, (vehicle_speed.max / VEHICLE_SPEED_FACTOR) + 1.) * limits.angle_deg_to_can;
int delta_angle_down_lower = interpolate(limits.angle_rate_down_lookup, (vehicle_speed.max / VEHICLE_SPEED_FACTOR) + 1.) * limits.angle_deg_to_can;
int highest_desired_angle_lower = desired_angle_last + ((desired_angle_last > 0) ? delta_angle_up_lower : delta_angle_down_lower);
int lowest_desired_angle_lower = desired_angle_last - ((desired_angle_last >= 0) ? delta_angle_down_lower : delta_angle_up_lower);
lowest_desired_angle = MIN(MAX(lowest_desired_angle, angle_meas.min - limits.max_angle_error - 1), highest_desired_angle_lower);
highest_desired_angle = MAX(MIN(highest_desired_angle, angle_meas.max + limits.max_angle_error + 1), lowest_desired_angle_lower);
// don't enforce above the max steer
lowest_desired_angle = CLAMP(lowest_desired_angle, -limits.max_steer, limits.max_steer);
highest_desired_angle = CLAMP(highest_desired_angle, -limits.max_steer, limits.max_steer);
}
// check for violation;
violation |= max_limit_check(desired_angle, highest_desired_angle, lowest_desired_angle);
}
desired_angle_last = desired_angle;
// Angle should either be 0 or same as current angle while not steering
if (!steer_control_enabled) {
violation |= (limits.inactive_angle_is_zero ? (desired_angle != 0) :
max_limit_check(desired_angle, angle_meas.max + 1, angle_meas.min - 1));
}
// No angle control allowed when controls are not allowed
violation |= !controls_allowed && steer_control_enabled;
return violation;
}
void pcm_cruise_check(bool cruise_engaged) {
// Enter controls on rising edge of stock ACC, exit controls if stock ACC disengages
if (!cruise_engaged) {
controls_allowed = false;
}
if (cruise_engaged && !cruise_engaged_prev) {
controls_allowed = true;
}
cruise_engaged_prev = cruise_engaged;
}