forked from seungeunrho/minimalRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ppo-lstm.py
137 lines (113 loc) · 4.58 KB
/
ppo-lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#PPO-LSTM
import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
import time
import numpy as np
#Hyperparameters
learning_rate = 0.0005
gamma = 0.98
lmbda = 0.95
eps_clip = 0.1
K_epoch = 2
T_horizon = 20
class PPO(nn.Module):
def __init__(self):
super(PPO, self).__init__()
self.data = []
self.fc1 = nn.Linear(4,64)
self.lstm = nn.LSTM(64,32)
self.fc_pi = nn.Linear(32,2)
self.fc_v = nn.Linear(32,1)
self.optimizer = optim.Adam(self.parameters(), lr=learning_rate)
def pi(self, x, hidden):
x = F.relu(self.fc1(x))
x = x.view(-1, 1, 64)
x, lstm_hidden = self.lstm(x, hidden)
x = self.fc_pi(x)
prob = F.softmax(x, dim=2)
return prob, lstm_hidden
def v(self, x, hidden):
x = F.relu(self.fc1(x))
x = x.view(-1, 1, 64)
x, lstm_hidden = self.lstm(x, hidden)
v = self.fc_v(x)
return v
def put_data(self, transition):
self.data.append(transition)
def make_batch(self):
s_lst, a_lst, r_lst, s_prime_lst, prob_a_lst, h_in_lst, h_out_lst, done_lst = [], [], [], [], [], [], [], []
for transition in self.data:
s, a, r, s_prime, prob_a, h_in, h_out, done = transition
s_lst.append(s)
a_lst.append([a])
r_lst.append([r])
s_prime_lst.append(s_prime)
prob_a_lst.append([prob_a])
h_in_lst.append(h_in)
h_out_lst.append(h_out)
done_mask = 0 if done else 1
done_lst.append([done_mask])
s,a,r,s_prime,done_mask,prob_a = torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst), \
torch.tensor(r_lst), torch.tensor(s_prime_lst, dtype=torch.float), \
torch.tensor(done_lst, dtype=torch.float), torch.tensor(prob_a_lst)
self.data = []
return s,a,r,s_prime, done_mask, prob_a, h_in_lst[0], h_out_lst[0]
def train_net(self):
s,a,r,s_prime,done_mask, prob_a, (h1_in, h2_in), (h1_out, h2_out) = self.make_batch()
first_hidden = (h1_in.detach(), h2_in.detach())
second_hidden = (h1_out.detach(), h2_out.detach())
for i in range(K_epoch):
v_prime = self.v(s_prime, second_hidden).squeeze(1)
td_target = r + gamma * v_prime * done_mask
v_s = self.v(s, first_hidden).squeeze(1)
delta = td_target - v_s
delta = delta.detach().numpy()
advantage_lst = []
advantage = 0.0
for item in delta[::-1]:
advantage = gamma * lmbda * advantage + item[0]
advantage_lst.append([advantage])
advantage_lst.reverse()
advantage = torch.tensor(advantage_lst, dtype=torch.float)
pi, _ = self.pi(s, first_hidden)
pi_a = pi.squeeze(1).gather(1,a)
ratio = torch.exp(torch.log(pi_a) - torch.log(prob_a)) # a/b == log(exp(a)-exp(b))
surr1 = ratio * advantage
surr2 = torch.clamp(ratio, 1-eps_clip, 1+eps_clip) * advantage
loss = -torch.min(surr1, surr2) + F.smooth_l1_loss(v_s, td_target.detach())
self.optimizer.zero_grad()
loss.mean().backward(retain_graph=True)
self.optimizer.step()
def main():
env = gym.make('CartPole-v1')
model = PPO()
score = 0.0
print_interval = 20
for n_epi in range(10000):
h_out = (torch.zeros([1, 1, 32], dtype=torch.float), torch.zeros([1, 1, 32], dtype=torch.float))
s, _ = env.reset()
done = False
while not done:
for t in range(T_horizon):
h_in = h_out
prob, h_out = model.pi(torch.from_numpy(s).float(), h_in)
prob = prob.view(-1)
m = Categorical(prob)
a = m.sample().item()
s_prime, r, done, truncated, info = env.step(a)
model.put_data((s, a, r/100.0, s_prime, prob[a].item(), h_in, h_out, done))
s = s_prime
score += r
if done:
break
model.train_net()
if n_epi%print_interval==0 and n_epi!=0:
print("# of episode :{}, avg score : {:.1f}".format(n_epi, score/print_interval))
score = 0.0
env.close()
if __name__ == '__main__':
main()