forked from NVIDIA/semantic-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
577 lines (473 loc) · 19.4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
"""
Evaluation Script
Support Two Modes: Pooling based inference and sliding based inference
"""
import os
import logging
import sys
import argparse
import re
import queue
import threading
from math import ceil
from datetime import datetime
from tqdm import tqdm
import cv2
from PIL import Image
import PIL
from torch.backends import cudnn
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torch
import torchvision.transforms as transforms
import numpy as np
import transforms.transforms as extended_transforms
from config import assert_and_infer_cfg
from datasets import cityscapes
from optimizer import restore_snapshot
from utils.my_data_parallel import MyDataParallel
from utils.misc import fast_hist, save_log, per_class_iu, evaluate_eval_for_inference
import network
sys.path.append(os.path.join(os.getcwd()))
sys.path.append(os.path.join(os.getcwd(), '../'))
parser = argparse.ArgumentParser(description='evaluation')
parser.add_argument('--dump_images', action='store_true', default=False)
parser.add_argument('--arch', type=str, default='', required=True)
parser.add_argument('--single_scale', action='store_true', default=False)
parser.add_argument('--scales', type=str, default='0.5,1.0,2.0')
parser.add_argument('--dist_bn', action='store_true', default=False)
parser.add_argument('--profile', action='store_true', default=False)
parser.add_argument('--fixed_aspp_pool', action='store_true', default=False,
help='fix the aspp image-level pooling size to 105')
parser.add_argument('--sliding_overlap', type=float, default=1 / 3)
parser.add_argument('--no_flip', action='store_true', default=False,
help='disable flipping')
parser.add_argument('--dataset', type=str, default='cityscapes',
help='cityscapes, video_folder')
parser.add_argument('--dataset_cls', type=str, default='cityscapes', help='cityscapes')
parser.add_argument('--trunk', type=str, default='resnet101', help='cnn trunk')
parser.add_argument('--dataset_dir', type=str, default=None,
help='Dataset Location')
parser.add_argument('--split', type=str, default='val')
parser.add_argument('--crop_size', type=int, default=1024)
parser.add_argument('--exp_name', type=str, default=None)
parser.add_argument('--snapshot', required=True, type=str, default='')
parser.add_argument('--ckpt_path', type=str, default=None)
parser.add_argument('-im', '--inference_mode', type=str, default='sliding',
help='sliding or pooling')
parser.add_argument('--test_mode', action='store_true', default=False,
help='minimum testing (4 items evaluated) to verify nothing failed')
parser.add_argument('--cv_split', type=int, default=None)
parser.add_argument('--mode', type=str, default='fine')
parser.add_argument('--split_index', type=int, default=0)
parser.add_argument('--split_count', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--resume', action='store_true', default=False,
help='Resume Inference')
parser.add_argument('--batch_size', type=int, default=1,
help='Only in pooling mode')
args = parser.parse_args()
assert_and_infer_cfg(args, train_mode=False)
args.apex = False # No support for apex eval
cudnn.benchmark = True
mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
date_str = str(datetime.now().strftime('%Y_%m_%d_%H_%M_%S'))
def sliding_window_cropping(data, scale=1.0):
"""
Sliding Window Cropping
Take the image and create a mapping and multiple crops
"""
sliding_window_cropping = None
mapping = {}
crop_ctr = 0
if scale < 1.0:
scale = 1.0
tile_size = (int(args.crop_size * scale), int(args.crop_size * scale))
overlap = args.sliding_overlap
for img_ctr in range(len(data)):
h, w = data[img_ctr].shape[1:]
mapping[img_ctr] = [w, h, []]
stride = ceil(tile_size[0] * (1 - overlap))
tile_rows = int(
ceil((w - tile_size[0]) / stride) + 1)
tile_cols = int(ceil((h - tile_size[1]) / stride) + 1)
for row in range(tile_rows):
for col in range(tile_cols):
y1 = int(col * stride)
x1 = int(row * stride)
x2 = min(x1 + tile_size[1], w)
y2 = min(y1 + tile_size[0], h)
x1 = int(x2 - tile_size[1])
y1 = int(y2 - tile_size[0])
if x1 < 0: # for portrait the x1 underflows sometimes
x1 = 0
if y1 < 0:
y1 = 0
if crop_ctr == 0:
sliding_window_cropping = data[img_ctr][:, y1:y2, x1:x2].unsqueeze(0)
else:
sliding_window_cropping = torch.cat(
(sliding_window_cropping,
data[img_ctr][:, y1:y2, x1:x2].unsqueeze(0)),
dim=0)
mapping[img_ctr][2].append((x1, y1, x2, y2))
crop_ctr += 1
return (mapping, sliding_window_cropping)
def resize_thread(flip, index, array, resizequeue, origw, origh):
"""
Thread to resize the image size
"""
if flip:
resizequeue.put((index, cv2.resize(np.fliplr(array),
(origw, origh),
interpolation=cv2.INTER_LINEAR)))
else:
resizequeue.put((index, cv2.resize(array, (origw, origh),
interpolation=cv2.INTER_LINEAR)))
def reverse_mapping(i, ctr, input_img, mapping, que, flip, origw, origh):
"""
Reverse Mapping for sliding window
"""
w, h, coords = mapping[i]
full_probs = np.zeros((args.dataset_cls.num_classes, h, w))
count_predictions = np.zeros((args.dataset_cls.num_classes, h, w))
for j in range(len(coords)):
x1, y1, x2, y2 = coords[j]
count_predictions[y1:y2, x1:x2] += 1
average = input_img[ctr]
if full_probs[:, y1: y2, x1: x2].shape != average.shape:
average = average[:, :y2 - y1, :x2 - x1]
full_probs[:, y1:y2, x1:x2] += average
ctr = ctr + 1
# Accumulate and average overerlapping areas
full_probs = full_probs / count_predictions.astype(np.float)
out_temp = []
out_y = []
t_list = []
resizequeue = queue.Queue()
classes = full_probs.shape[0]
for y_ in range(classes):
t = threading.Thread(target=resize_thread, args=(flip, y_, full_probs[y_],
resizequeue, origw, origh))
t.daemon = True
t.start()
t_list.append(t)
for thread in t_list:
thread.join()
out_temp.append(resizequeue.get())
dictionary = dict(out_temp)
for iterator in range(classes):
out_y.append(dictionary[iterator])
que.put(out_y)
def reverse_sliding_window(mapping, input_img, flip_list, origw, origh, final_queue):
"""
Take mapping and crops and reconstruct original image
"""
batch_return = []
ctr = 0
# Loop through the maps and merge them together
que = queue.Queue()
t_list = []
for i in range(len(mapping)):
t = threading.Thread(target=reverse_mapping, args=(i, ctr, input_img, mapping, que,
flip_list[i], origw, origh))
ctr = ctr + len(mapping[i][2])
t.daemon = True
t.start()
t_list.append(t)
for item in t_list:
item.join()
batch_return.append(que.get())
final_queue.put(np.mean(batch_return, axis=0))
def pooled_eval(model, image, scale):
"""
Perform Pooled Evaluation
"""
with torch.no_grad():
y = model(image)
if scale > 1.0:
y = [torch.nn.AvgPool2d((2, 2), stride=2)(y_) for y_ in y]
elif scale < 1.0:
y = [torch.nn.Upsample(scale_factor=2, mode='bilinear')(y_) for y_ in y]
else:
pass
return y
def flip_tensor(x, dim):
"""
Flip Tensor along a dimension
"""
dim = x.dim() + dim if dim < 0 else dim
return x[tuple(slice(None, None) if i != dim
else torch.arange(x.size(i) - 1, -1, -1).long()
for i in range(x.dim()))]
def inference_pool(model, img, scales):
"""
Post Inference Pool Operations
"""
if args.no_flip:
flip_range = 1
else:
flip_range = 2
y_tmp_with_flip = 0
for flip in range(flip_range):
y_tmp = None
for i in range(len(scales)):
if type(y_tmp) == type(None):
y_tmp = pooled_eval(model, img[flip][i], scales[i])
else:
out = pooled_eval(model, img[flip][i], scales[i])
[x.add_(y) for x, y in zip(y_tmp, out)]
if flip == 0:
y_tmp_with_flip = y_tmp
else:
[x.add_(flip_tensor(y, 3)) for x, y in zip(y_tmp_with_flip, y_tmp)]
y = [torch.argmax(y_ / (flip_range * len(scales)), dim=1).cpu().numpy() for y_ in
y_tmp_with_flip]
return y
def inference_sliding(model, img, scales):
"""
Sliding Window Inference Function
"""
w, h = img.size
origw, origh = img.size
preds = []
if args.no_flip:
flip_range = 1
else:
flip_range = 2
finalque = queue.Queue()
t_list = []
for scale in scales:
target_w, target_h = int(w * scale), int(h * scale)
scaled_img = img.resize((target_w, target_h), Image.BILINEAR)
y = []
image_list = []
flip_list = []
for flip in range(flip_range):
if flip:
scaled_img = scaled_img.transpose(Image.FLIP_LEFT_RIGHT)
img_transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(*mean_std)])
image = img_transform(scaled_img)
image_list.append(image)
flip_list.append(flip)
mapping, input_crops = sliding_window_cropping(image_list, scale=scale)
with torch.no_grad():
input_crops = Variable(input_crops.cuda())
output_scattered = model(input_crops)
output_scattered = output_scattered.data.cpu().numpy()
t = threading.Thread(target=reverse_sliding_window, args=(mapping, output_scattered,
flip_list, origw,
origh, finalque))
t.daemon = True
t.start()
t_list.append(t)
for threads in t_list:
threads.join()
preds.append(finalque.get())
return preds
def setup_loader():
"""
Setup Data Loaders
"""
val_input_transform = transforms.ToTensor()
target_transform = extended_transforms.MaskToTensor()
if args.dataset == 'cityscapes':
args.dataset_cls = cityscapes
eval_mode_pooling = False
eval_scales = None
if args.inference_mode == 'pooling':
eval_mode_pooling = True
eval_scales = args.scales
test_set = args.dataset_cls.CityScapes(args.mode, args.split,
transform=val_input_transform,
target_transform=target_transform,
cv_split=args.cv_split,
eval_mode=eval_mode_pooling,
eval_scales=eval_scales,
eval_flip=not args.no_flip,
)
else:
raise NameError('-------------Not Supported Currently-------------')
if args.split_count > 1:
test_set.split_dataset(args.split_index, args.split_count)
batch_size = 1
if args.inference_mode == 'pooling':
batch_size = args.batch_size
test_loader = DataLoader(test_set, batch_size=batch_size, num_workers=args.num_workers,
shuffle=False, pin_memory=False, drop_last=False)
return test_loader
def get_net():
"""
Get Network for evaluation
"""
logging.info('Load model file: %s', args.snapshot)
net = network.get_net(args, criterion=None)
if args.inference_mode == 'pooling':
net = MyDataParallel(net, gather=False).cuda()
else:
net = torch.nn.DataParallel(net).cuda()
net, _ = restore_snapshot(net, optimizer=None,
snapshot=args.snapshot, restore_optimizer_bool=False)
net.eval()
return net
class RunEval():
def __init__(self, output_dir, metrics, write_image, dataset_cls, inference_mode):
self.output_dir = output_dir
self.rgb_path = os.path.join(output_dir, 'rgb')
self.pred_path = os.path.join(output_dir, 'pred')
self.diff_path = os.path.join(output_dir, 'diff')
self.compose_path = os.path.join(output_dir, 'compose')
self.metrics = metrics
self.write_image = write_image
self.dataset_cls = dataset_cls
self.inference_mode = inference_mode
self.mapping = {}
os.makedirs(self.rgb_path, exist_ok=True)
os.makedirs(self.pred_path, exist_ok=True)
os.makedirs(self.diff_path, exist_ok=True)
os.makedirs(self.compose_path, exist_ok=True)
if self.metrics:
self.hist = np.zeros((self.dataset_cls.num_classes,
self.dataset_cls.num_classes))
else:
self.hist = None
def softmax(self, x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0) # only difference
def inf(self, imgs, img_names, gt, inference, net, scales, pbar, base_img):
######################################################################
# Run inference
######################################################################
self.img_name = img_names[0]
col_img_name = '{}/{}_color.png'.format(self.rgb_path, self.img_name)
pred_img_name = '{}/{}.png'.format(self.pred_path, self.img_name)
diff_img_name = '{}/{}_diff.png'.format(self.diff_path, self.img_name)
compose_img_name = '{}/{}_compose.png'.format(self.compose_path, self.img_name)
to_pil = transforms.ToPILImage()
if self.inference_mode == 'pooling':
img = imgs
pool_base_img = to_pil(base_img[0])
else:
img = to_pil(imgs[0])
prediction_pre_argmax_collection = inference(net, img, scales)
if self.inference_mode == 'pooling':
prediction = prediction_pre_argmax_collection
prediction = np.concatenate(prediction, axis=0)[0]
else:
prediction_pre_argmax = np.mean(prediction_pre_argmax_collection, axis=0)
prediction = np.argmax(prediction_pre_argmax, axis=0)
if self.metrics:
self.hist += fast_hist(prediction.flatten(), gt.cpu().numpy().flatten(),
self.dataset_cls.num_classes)
iou = round(np.nanmean(per_class_iu(self.hist)) * 100, 2)
pbar.set_description("Mean IOU: %s" % (str(iou)))
######################################################################
# Dump Images
######################################################################
if self.write_image:
if self.inference_mode == 'pooling':
img = pool_base_img
colorized = self.dataset_cls.colorize_mask(prediction)
colorized.save(col_img_name)
blend = Image.blend(img.convert("RGBA"), colorized.convert("RGBA"), 0.5)
blend.save(compose_img_name)
if gt is not None:
gt = gt[0].cpu().numpy()
# only write diff image if gt is valid
diff = (prediction != gt)
diff[gt == 255] = 0
diffimg = Image.fromarray(diff.astype('uint8') * 255)
PIL.ImageChops.lighter(
blend,
PIL.ImageOps.invert(diffimg).convert("RGBA")
).save(diff_img_name)
label_out = np.zeros_like(prediction)
for label_id, train_id in self.dataset_cls.id_to_trainid.items():
label_out[np.where(prediction == train_id)] = label_id
cv2.imwrite(pred_img_name, label_out)
def final_dump(self):
"""
Dump Final metrics on completion of evaluation
"""
if self.metrics:
evaluate_eval_for_inference(self.hist, args.dataset_cls)
def infer_args():
"""
To make life easier, we infer some args from the snapshot meta information.
"""
if 'dist_bn' in args.snapshot and not args.dist_bn:
args.dist_bn = True
cv_re = re.search(r'-cv_(\d)-', args.snapshot)
if cv_re and args.cv_split is None:
args.cv_split = int(cv_re.group(1))
snap_dir, _snap_file = os.path.split(args.snapshot)
exp_dir, snap_dir = os.path.split(snap_dir)
ckpt_path, exp_dir = os.path.split(exp_dir)
ckpt_path = os.path.basename(ckpt_path)
if args.exp_name is None:
args.exp_name = exp_dir
if args.ckpt_path is None:
args.ckpt_path = ckpt_path
if args.dataset == 'video_folder':
args.split = 'video_folder'
def main():
"""
Main Function
"""
# Parse args and set up logging
infer_args()
if args.single_scale:
scales = [1.0]
else:
scales = [float(x) for x in args.scales.split(',')]
output_dir = os.path.join(args.ckpt_path, args.exp_name, args.split)
os.makedirs(output_dir, exist_ok=True)
save_log('eval', output_dir, date_str)
logging.info("Network Arch: %s", args.arch)
logging.info("CV split: %d", args.cv_split)
logging.info("Exp_name: %s", args.exp_name)
logging.info("Ckpt path: %s", args.ckpt_path)
logging.info("Scales : %s", ' '.join(str(e) for e in scales))
logging.info("Inference mode: %s", args.inference_mode)
# Set up network, loader, inference mode
metrics = args.dataset != 'video_folder'
test_loader = setup_loader()
runner = RunEval(output_dir, metrics,
write_image=args.dump_images,
dataset_cls=args.dataset_cls,
inference_mode=args.inference_mode)
net = get_net()
# Fix the ASPP pool size to 105, which is the tensor size if you train with crop
# size of 840x840
if args.fixed_aspp_pool:
net.module.aspp.img_pooling = torch.nn.AvgPool2d(105)
if args.inference_mode == 'sliding':
inference = inference_sliding
elif args.inference_mode == 'pooling':
inference = inference_pool
else:
raise 'Not a valid inference mode: {}'.format(args.inference_mode)
# Run Inference!
pbar = tqdm(test_loader, desc='eval {}'.format(args.split), smoothing=1.0)
for iteration, data in enumerate(pbar):
if args.dataset == 'video_folder':
imgs, img_names = data
gt = None
else:
if args.inference_mode == 'pooling':
base_img, gt_with_imgs, img_names = data
base_img = base_img[0]
imgs = gt_with_imgs[0]
gt = gt_with_imgs[1]
else:
base_img = None
imgs, gt, img_names = data
runner.inf(imgs, img_names, gt, inference, net, scales, pbar, base_img)
if iteration > 5 and args.test_mode:
break
# Calculate final overall statistics
runner.final_dump()
if __name__ == '__main__':
main()